An Integrated Procedure for Bayesian Reliability Inference Using MCMC

The recent proliferation of Markov chain Monte Carlo (MCMC) approaches has led to the use of the Bayesian inference in a wide variety of fields. To facilitate MCMC applications, this paper proposes an integrated procedure for Bayesian inference using MCMC methods, from a reliability perspective. The goal is to build a framework for related academic research and engineering applications to implement modern computational-based Bayesian approaches, especially for reliability inferences. The procedure developed here is a continuous improvement process with four stages (Plan, Do, Study, and Action) and 11 steps, including: (1) data preparation; (2) prior inspection and integration; (3) prior selection; (4) model selection; (5) posterior sampling; (6) MCMC convergence diagnostic; (7) Monte Carlo error diagnostic; (8) model improvement; (9) model comparison; (10) inference making; (11) data updating and inference improvement. The paper illustrates the proposed procedure using a case study.

[1]  Philip C. Gregory,et al.  Extra-solar Planets via Bayesian Fusion MCMC , 2013 .

[2]  David G. Robinson A Hierarchial Bayes Approach to System Reliability Analysis , 2001 .

[3]  Purushottam W. Laud,et al.  A Predictive Approach to the Analysis of Designed Experiments , 1994 .

[4]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[5]  Curtis Smith,et al.  Bayesian inference in probabilistic risk assessment - The current state of the art , 2009, Reliab. Eng. Syst. Saf..

[6]  David G. Robinson,et al.  A Hierarchical Bayes Approach to System Reliability Analysis , 2003 .

[7]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[9]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[10]  Zhou Jing-lun Application of Similar System Reliability Information to Complex System Bayesian Reliability Evaluation , 2004 .

[11]  S. Rahman Reliability Engineering and System Safety , 2011 .

[12]  Huiming Zhu,et al.  Bayesian survival analysis in reliability for complex system with a cure fraction , 2011 .

[13]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[14]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[15]  Lynn Kuo,et al.  Bayesian semiparametric inference for the accelerated failure‐time model , 1997 .

[16]  Alyson G. Wilson,et al.  A fully Bayesian approach for combining multilevel failure information in fault tree quantification and optimal follow-on resource allocation , 2004, Reliab. Eng. Syst. Saf..

[17]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[18]  Bin Yu,et al.  Looking at Markov samplers through cusum path plots: a simple diagnostic idea , 1998, Stat. Comput..

[19]  M. May Bayesian Survival Analysis. , 2002 .

[20]  Alyson G. Wilson Hierarchical Markov Chain Monte Carlo (MCMC) for Bayesian System Reliability , 2014 .

[21]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[22]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[23]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[24]  Harry F. Martz,et al.  A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification , 2007, Reliab. Eng. Syst. Saf..

[25]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[26]  Joong-Kweon Sohn,et al.  Convergence Diagnostics for the Gibbs Sampler , 1996 .

[27]  L. Kuo,et al.  Bayesian reliability modeling for masked system lifetime data , 2000 .

[28]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[29]  B. Mallick,et al.  A Bayesian Semiparametric Accelerated Failure Time Model , 1999, Biometrics.

[30]  Wayne S. DeSarbo,et al.  Bayesian inference for finite mixtures of generalized linear models with random effects , 2000 .

[31]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[32]  H. Chen,et al.  A comparative study on model selection and multiple model fusion , 2005, 2005 7th International Conference on Information Fusion.

[33]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[34]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[35]  Jin Guang,et al.  A Bayes information fusion approach for reliability modeling and assessment of spaceflight longlife product , 2012 .

[36]  A. Zellner,et al.  Gibbs Sampler Convergence Criteria , 1995 .

[37]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[38]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[39]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[40]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .

[41]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[42]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[43]  Subhashis Ghosal,et al.  A Review of Consistency and Convergence of Posterior Distribution , 2022 .

[44]  Georg Dorffner,et al.  A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models , 2006 .

[45]  Xun Chen,et al.  The Bayesian reliability growth models based on a new dirichlet prior distribution , 2009 .

[46]  A. Raftery,et al.  Bayesian Information Criterion for Censored Survival Models , 2000, Biometrics.

[47]  D. Dey,et al.  Bayesian analysis of multivariate survival data using Monte Carlo methods , 1998 .

[48]  B. Clarke,et al.  Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh , 2008, 0806.4445.

[49]  D. Dey,et al.  Bayesian criterion based model assessment for categorical data , 2004 .

[50]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[51]  L. M. M.-T. Theory of Probability , 1929, Nature.

[52]  Aditya Parida,et al.  Reliability Analysis for Degradation of Locomotive Wheels using Parametric Bayesian Approach , 2014, Qual. Reliab. Eng. Int..

[53]  Changsong Deng,et al.  Statistics and Probability Letters , 2011 .

[54]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[55]  Matthias Asplund,et al.  Bayesian semi-parametric analysis for locomotive wheel degradation using gamma frailties , 2015 .

[56]  A. Raftery,et al.  Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .

[57]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[58]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[59]  Jing Lin,et al.  A Two-Stage Failure Model for Bayesian Change Point Analysis , 2008, IEEE Transactions on Reliability.

[60]  Ilkka Karanta,et al.  Methods and problems of software reliability estimation , 2006 .

[61]  A. M. Walker On the Asymptotic Behaviour of Posterior Distributions , 1969 .

[62]  Siu-Kui Au,et al.  Application of subset simulation methods to reliability benchmark problems , 2007 .

[63]  Luige Vlădăreanu,et al.  Hierarchical Bayesian reliability analysis of complex dynamical systems , 2009 .

[64]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[65]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[66]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[67]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[68]  Yoshinobu Tamura,et al.  Component-Oriented Reliability Analysis Based on Hierarchical Bayesian Model for an Open Source Software , 2011 .

[69]  V. Johnson Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths , 1996 .

[70]  S. Sahu,et al.  A fast distance‐based approach for determining the number of components in mixtures , 2003 .

[71]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[72]  W. Johnson,et al.  A Bayesian Semiparametric AFT Model for Interval-Censored Data , 2004 .

[73]  Liu Qi,et al.  The Combination of Prior Distributions Based on Kullback Information , 2002 .

[74]  S. Ghosal Semiparametric Accelerated Failure Time Models for Censored Data , 2006 .

[75]  D K Dey,et al.  A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data , 1997, Lifetime data analysis.

[76]  H. Martz,et al.  Bayes reliability estimation using multiple sources of prior information: binomial sampling , 1994 .

[77]  Guo-Ying Li,et al.  ON BAYESIAN ANALYSIS OF BINOMIAL RELIABILITY GROWTH , 2002 .

[78]  Jing Lin,et al.  Bayesian parametric analysis for reliability study of locomotive wheels , 2013, 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS).

[79]  Arnošt Komárek,et al.  The regression analysis of correlated interval-censored data , 2009 .

[80]  G. I. Schuëller,et al.  Benchmark Study on Reliability Estimation in Higher Dimensions of Structural Systems – An Overview , 2007 .

[81]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .

[82]  V. E. Johnson,et al.  A hierarchical model for estimating the early reliability of complex systems , 2005, IEEE Transactions on Reliability.

[83]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.