Detection of stressed oil palms from an airborne sensor using optimized spectral indices

Existing vegetation indices and red-edge techniques have been widely used for the assessment of vegetation status and vegetation health from remote-sensing instruments. This study proposed and applied optimized Airborne Imaging Spectrometer for Applications (AISA) airborne hyperspectral indices in assessing and mapping stressed oil palm trees. Six vegetation indices, four red-edge techniques, a standard supervised classifier and three optimized AISA spectral indices were compared in mapping diseased oil palms using AISA airborne hyperspectral imagery. The optimized AISA spectral indices algorithms used newly defined reflectance values at wavelength locations of 734 nm (near-infrared (NIR)) and 616 nm (red). The selection of these two bands was based on laboratory statistical analysis using field spectroradiometer reflectance data. These two bands were then applied to the AISA airborne hyperspectral imagery using the three optimized algorithms for AISA data. The newly formulated AISA hyperspectral indices were D2 = R 616/R 734, normalized difference vegetation index a (NDVIa) = (R 734 – R 616)/(R 734 + R 616) and transformed vegetation index a (TVIa) = ((NDVIa + 0.5)/(abs (NDVIa + 0.5)) × [abs (NDVIa + 0.5)]1/2. The classification results from the optimized AISA hyperspectral indices were compared with the other techniques and the optimized AISA spectral indices obtained the highest overall accuracy. D2 and NDVIa obtained 86% of overall accuracy followed by TVIa with 84% of overall accuracy.

[1]  D. Moshou,et al.  The potential of optical canopy measurement for targeted control of field crop diseases. , 2003, Annual review of phytopathology.

[2]  Armando Apan,et al.  Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery , 2004 .

[3]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[4]  Helmi Zulhaidi Mohd Shafri,et al.  Determination of optimal wavelet denoising parameters for red edge feature extraction from hyperspectral data , 2009 .

[5]  Jai Singh Parihar,et al.  Disease detection in mustard crop using eo-1 hyperion satellite data , 2006 .

[6]  B. K. Ranganath,et al.  Detection of diseased rubber plantations using satellite remote sensing , 2004 .

[7]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[8]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[9]  N. Elliott,et al.  Original papers: Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing , 2009 .

[10]  Eike Luedeling,et al.  Remote Sensing of Spider Mite Damage in California Peach Orchards Keywords: Aerial Imagery Integrated Pest Management Partial Least Squares (pls) Regression Prunus Persica Remote Sensing Spectral Reflectance Spectroradiometer , 2022 .

[11]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[12]  Moon S. Kim,et al.  Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .

[13]  Gregory P. Asner,et al.  Ecological Research Needs from Multiangle Remote Sensing Data , 1998 .

[14]  H. Gausman,et al.  Reflectance of leaf components , 1977 .

[15]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[16]  H. Poilvé,et al.  Hyperspectral Imaging and Stress Mapping in Agriculture , 1998 .

[17]  Rainer Laudien,et al.  COMPARISON OF REMOTE SENSING BASED ANALYSIS OF CROP DISEASES BY USING HIGH RESOLUTION MULTISPECTRAL AND HYPERSPECTRAL DATA - CASE STUDY: RHIZOCTONIA SOLANI IN SUGAR BEET - , 2004 .

[18]  Megan M. Lewis,et al.  Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  Qian Du,et al.  Citrus pest stress monitoring using airborne hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[20]  H. Ramon,et al.  Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks , 2004 .

[21]  Zhihao Qin,et al.  Remote sensing analysis of rice disease stresses for farm pest management using wide-band airborne data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[22]  S. Ustin,et al.  Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing , 2003 .

[23]  Gunter Menz,et al.  Multi-temporal wheat disease detection by multi-spectral remote sensing , 2007, Precision Agriculture.

[24]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[25]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[26]  Z. Niu,et al.  Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging , 2007, Precision Agriculture.

[27]  T. Malthus,et al.  High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae , 1993 .

[28]  B. Datt,et al.  On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification , 2005 .

[29]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[30]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[31]  Jindi Wang,et al.  Monitoring of wheat yellow rust with dynamic hyperspectral data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[32]  E. B. Knipling Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .

[33]  U. Altinbas Processing and Analyzing Advanced Hyperspectral Imagery Data for Identifying Clay Minerals .A Case Study , 2006 .

[34]  M. Bauer The role of remote sensing in determining the distribution and yield of crops , 1975 .

[35]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[36]  S. Delalieux,et al.  Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology , 2009 .

[37]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[38]  W. R. Windham,et al.  Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. , 1995, Tree physiology.

[39]  W. Collins,et al.  Remote sensing of crop type and maturity , 1978 .

[40]  D. Shaw,et al.  Evaluating Remote Sensing for Determining and Classifying Soybean Anomalies , 2005, Precision Agriculture.

[41]  Claus Buschmann,et al.  In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation , 1993 .

[42]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[43]  L. Estep,et al.  Technical Note: Crop stress detection using AVIRIS hyperspectral imagery and artificial neural networks , 2004 .

[44]  Elizabeth Pattey,et al.  Narrowband vegetation indexes and detection of disease damage in soybeans , 2004, IEEE Geoscience and Remote Sensing Letters.

[45]  H. Shafri,et al.  Hyperspectral Signal Analysis for Detecting Disease Infection in Oil Palms , 2008, 2008 International Conference on Computer and Electrical Engineering.

[46]  E. Hunt,et al.  Estimating near-infrared leaf reflectance from leaf structural characteristics. , 2001, American journal of botany.

[47]  Gregory A. Carter,et al.  Responses of leaf spectral reflectance to plant stress. , 1993 .

[48]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[49]  J. J. Colls,et al.  Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks , 2004 .

[50]  A. K. Skidmore,et al.  Derivation of the red edge index using the MERIS standard band setting , 2002 .

[51]  Jingfeng Huang,et al.  Characterizing and Estimating Fungal Disease Severity of Rice Brown Spot with Hyperspectral Reflectance Data , 2008 .

[52]  J. H. Everitt,et al.  Distinguishing succulent plants from crop and woody plants , 1978 .

[53]  Hamed Hamid Muhammed,et al.  Hyperspectral Crop Reflectance Data for characterising and estimating Fungal Disease Severity in Wheat , 2005 .

[54]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[55]  Zhihao Qin,et al.  Spectral analysis of tomato late blight infections for remote sensing of tomato disease stress in California , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[56]  Xuezheng Shi,et al.  Hyper-spectral remote sensing to monitor vegetation stress , 2008 .

[57]  Paul J. Curran,et al.  Imaging spectrometry , 1994 .

[58]  Uwe Rascher,et al.  Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants , 2005, SPIE Remote Sensing.

[59]  Pablo J. Zarco-Tejada,et al.  Hyperspectral Remote Sensing of Forest Condition: Estimating Chlorophyll Content in Tolerant Hardwoods , 2003, Forest Science.

[60]  M. Iqbal Saripan,et al.  Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data , 2009 .