Local binary features for texture classification: Taxonomy and experimental study

Local Binary Patterns (LBP) have emerged as one of the most prominent and widely studied local texture descriptors. Truly a large number of LBP variants has been proposed, to the point that it can become overwhelming to grasp their respective strengths and weaknesses, and there is a need for a comprehensive study regarding the prominent LBP-related strategies. New types of descriptors based on multistage convolutional networks and deep learning have also emerged. In different papers the performance comparison of the proposed methods to earlier approaches is mainly done with some well-known texture datasets, with differing classifiers and testing protocols, and often not using the best sets of parameter values and multiple scales for the comparative methods. Very important aspects such as computational complexity and effects of poor image quality are often neglected.In this paper, we provide a systematic review of current LBP variants and propose a taxonomy to more clearly group the prominent alternatives. Merits and demerits of the various LBP features and their underlying connections are also analyzed. We perform a large scale performance evaluation for texture classification, empirically assessing forty texture features including thirty two recent most promising LBP variants and eight non-LBP descriptors based on deep convolutional networks on thirteen widely-used texture datasets. The experiments are designed to measure their robustness against different classification challenges, including changes in rotation, scale, illumination, viewpoint, number of classes, different types of image degradation, and computational complexity. The best overall performance is obtained for the Median Robust Extended Local Binary Pattern (MRELBP) feature. For textures with very large appearance variations, Fisher vector pooling of deep Convolutional Neural Networks is clearly the best, but at the cost of very high computational complexity. The sensitivity to image degradations and computational complexity are among the key problems for most of the methods considered. HighlightsA taxonomy and comprehensive survey of LBP variants.Characteristics of, and connections between LBP variants are provided.A comprehensive experimental evaluation of 32 LBP methods.Comparison of 32 LBP variants with 8 deep ConvNets features.Evaluation of robustness to rotation, illumination, scale and noise changes.Comparison of computational complexity of forty variants.

[1]  Wanqing Li,et al.  Object detection using Non-Redundant Local Binary Patterns , 2010, 2010 IEEE International Conference on Image Processing.

[2]  Gerald Schaefer,et al.  Multi-dimensional local binary pattern descriptors for improved texture analysis , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[3]  Hanqing Lu,et al.  Face detection using improved LBP under Bayesian framework , 2004, Third International Conference on Image and Graphics (ICIG'04).

[4]  Kazuhiro Fukui,et al.  Feature Extraction Based on Co-occurrence of Adjacent Local Binary Patterns , 2011, PSIVT.

[5]  Zhenhua Guo,et al.  Hierarchical multiscale LBP for face and palmprint recognition , 2010, 2010 IEEE International Conference on Image Processing.

[6]  GaoWen,et al.  Histogram of Gabor Phase Patterns (HGPP) , 2007 .

[7]  Yan Ma Number Local binary pattern: An Extended Local Binary Pattern , 2011, 2011 International Conference on Wavelet Analysis and Pattern Recognition.

[8]  Yong Xu,et al.  A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Esa Rahtu,et al.  Rotation invariant local phase quantization for blur insensitive texture analysis , 2008, 2008 19th International Conference on Pattern Recognition.

[10]  Yang Zhao,et al.  Completed Local Binary Count for Rotation Invariant Texture Classification , 2012, IEEE Transactions on Image Processing.

[11]  Matti Pietikäinen,et al.  Image description using joint distribution of filter bank responses , 2009, Pattern Recognit. Lett..

[12]  Stéphane Mallat,et al.  Combined scattering for rotation invariant texture analysis , 2012, ESANN.

[13]  Dong-Chen He,et al.  Texture features based on texture spectrum , 1991, Pattern Recognit..

[14]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[15]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[16]  Sébastien Marcel,et al.  Haar Local Binary Pattern Feature for Fast Illumination Invariant Face Detection , 2009, BMVC.

[17]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  M. Pietikäinen,et al.  SOFT HISTOGRAMS FOR LOCAL BINARY PATTERNS , 2007 .

[19]  Matti Pietikäinen,et al.  Extended local binary pattern fusion for face recognition , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[20]  David A. Clausi,et al.  Sorted random projections for robust rotation-invariant texture classification , 2012, Pattern Recognit..

[21]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[22]  Bertrand Zavidovique,et al.  Median Binary Pattern for Textures Classification , 2007, ICIAR.

[23]  Tieniu Tan,et al.  Combining Statistics of Geometrical and Correlative Features for 3D Face Recognition , 2006, BMVC.

[24]  Frédéric Jurie,et al.  Face Recognition using Local Quantized Patterns , 2012, BMVC.

[25]  Jun Zhang,et al.  Local Energy Pattern for Texture Classification Using Self-Adaptive Quantization Thresholds , 2013, IEEE Transactions on Image Processing.

[26]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[27]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Loris Nanni,et al.  A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states , 2010, Expert Syst. Appl..

[29]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[30]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[31]  Wanqing Li,et al.  A novel shape-based non-redundant local binary pattern descriptor for object detection , 2013, Pattern Recognit..

[32]  Fakhry M. Khellah,et al.  Texture Classification Using Dominant Neighborhood Structure , 2011, IEEE Transactions on Image Processing.

[33]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Guizhong Liu,et al.  Scale- and Rotation-Invariant Local Binary Pattern Using Scale-Adaptive Texton and Subuniform-Based Circular Shift , 2012, IEEE Transactions on Image Processing.

[35]  Matti Pietikäinen,et al.  Rotation-Invariant Image and Video Description With Local Binary Pattern Features , 2012, IEEE Transactions on Image Processing.

[36]  Marcos X. Álvarez-Cid,et al.  Texture Description Through Histograms of Equivalent Patterns , 2012, Journal of Mathematical Imaging and Vision.

[37]  Esa Rahtu,et al.  BSIF: Binarized statistical image features , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[38]  Cheng Wang,et al.  A novel extended local-binary-pattern operator for texture analysis , 2008, Inf. Sci..

[39]  Dimitrios K. Iakovidis,et al.  Fuzzy Local Binary Patterns for Ultrasound Texture Characterization , 2008, ICIAR.

[40]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[41]  Zhenhua Guo,et al.  Rotation invariant texture classification using adaptive LBP with directional statistical features , 2010, 2010 IEEE International Conference on Image Processing.

[42]  Caifeng Shan,et al.  Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition , 2008, BMVC.

[43]  Tal Hassner,et al.  Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  SánchezJorge,et al.  Image Classification with the Fisher Vector , 2013 .

[45]  Thomas Mensink,et al.  Image Classification with the Fisher Vector: Theory and Practice , 2013, International Journal of Computer Vision.

[46]  Wang Xiaotong,et al.  Neighborhood Limited Empirical Mode Decomposition and Application in Image Processing , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[47]  Matti Pietikäinen,et al.  RLBP: Robust Local Binary Pattern , 2013, BMVC.

[48]  Francesco Bianconi,et al.  General Framework for Rotation Invariant Texture Classification Through Co-occurrence of Patterns , 2014, Journal of Mathematical Imaging and Vision.

[49]  Matti Pietikäinen,et al.  Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  DavarzaniReza,et al.  Scale- and rotation-invariant texture description with improved local binary pattern features , 2015 .

[51]  Guoying Zhao,et al.  BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification , 2014, IEEE Transactions on Image Processing.

[52]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Yee-Hong Yang,et al.  Rotation Invariant Local Frequency Descriptors for Texture Classification , 2013, IEEE Transactions on Image Processing.

[55]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[56]  Jan-Michael Frahm,et al.  Comparative Evaluation of Binary Features , 2012, ECCV.

[57]  Jun Guo,et al.  Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification , 2013, BMVC.

[58]  Matti Pietikäinen,et al.  Learning Discriminant Face Descriptor , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Gaurav Sharma,et al.  Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis , 2012, ECCV.

[60]  Matti Pietikäinen,et al.  Median Robust Extended Local Binary Pattern for Texture Classification , 2016, IEEE Transactions on Image Processing.

[61]  Gertjan J. Burghouts,et al.  Material-specific adaptation of color invariant features , 2009, Pattern Recognit. Lett..

[62]  Gerald Schaefer,et al.  A comprehensive benchmark of local binary pattern algorithms for texture retrieval , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[63]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[64]  Francesco Bianconi,et al.  Image classification with binary gradient contours , 2011 .

[65]  Matti Pietikäinen,et al.  Computer Vision Using Local Binary Patterns , 2011, Computational Imaging and Vision.

[66]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Hamed Kiani Galoogahi,et al.  Face sketch recognition by Local Radon Binary Pattern: LRBP , 2012, 2012 19th IEEE International Conference on Image Processing.

[68]  Jiri Matas,et al.  Extended Set of Local Binary Patterns for Rapid Object Detection , 2010 .

[69]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[70]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Shengcai Liao,et al.  Face Detection Based on Multi-Block LBP Representation , 2007, ICB.

[72]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[73]  ZhangBaochang,et al.  Local derivative pattern versus local binary pattern , 2010 .

[74]  Xudong Jiang,et al.  Noise-Resistant Local Binary Pattern With an Embedded Error-Correction Mechanism , 2013, IEEE Transactions on Image Processing.

[75]  C. Schmid,et al.  Description of Interest Regions with Center-Symmetric Local Binary Patterns , 2006, ICVGIP.

[76]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[77]  Bill Triggs,et al.  Feature Sets and Dimensionality Reduction for Visual Object Detection , 2010, BMVC.

[78]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[79]  Matti Pietikäinen,et al.  Incorporating Texture Intensity Information into LBP-Based Operators , 2013, SCIA.

[80]  Yee-Hong Yang,et al.  Robust Edge Aware Descriptor for Image Matching , 2014, ACCV.

[81]  Dong-Chen He,et al.  Texture Unit, Texture Spectrum And Texture Analysis , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[82]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[83]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Yiding Wang,et al.  A Robust Method for Near Infrared Face Recognition Based on Extended Local Binary Pattern , 2007, ISVC.

[85]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[86]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[87]  Matti Pietikäinen,et al.  Human Activity Recognition Using a Dynamic Texture Based Method , 2008, BMVC.

[88]  Dong-Chen He,et al.  Unsupervised textural classification of images using the texture spectrum , 1992, Pattern Recognit..

[89]  Xudong Jiang,et al.  LBP-Based Edge-Texture Features for Object Recognition , 2014, IEEE Transactions on Image Processing.

[90]  Paul W. Fieguth,et al.  Texture Classification from Random Features , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Matti Pietikäinen,et al.  A Bayesian Local Binary Pattern texture descriptor , 2008, 2008 19th International Conference on Pattern Recognition.

[92]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[93]  Xin Yang,et al.  Local Difference Binary for Ultrafast and Distinctive Feature Description , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Hyun Seung Yang,et al.  Sorted Consecutive Local Binary Pattern for Texture Classification , 2015, IEEE Transactions on Image Processing.

[95]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[97]  Saeed Mozaffari,et al.  Scale- and rotation-invariant texture description with improved local binary pattern features , 2015, Signal Process..

[98]  Matti Pietikäinen,et al.  Combining LBP Difference and Feature Correlation for Texture Description , 2014, IEEE Transactions on Image Processing.

[99]  Jana Reinhard,et al.  Textures A Photographic Album For Artists And Designers , 2016 .

[100]  Ari Paasio,et al.  Reducing the feature vector length in local binary pattern based face recognition , 2005, IEEE International Conference on Image Processing 2005.

[101]  Loris Nanni,et al.  Survey on LBP based texture descriptors for image classification , 2012, Expert Syst. Appl..

[102]  Matti Pietikäinen,et al.  Multi-scale Binary Patterns for Texture Analysis , 2003, SCIA.

[103]  PietikainenMatti,et al.  Face Description with Local Binary Patterns , 2006 .

[104]  Wei Wei,et al.  Centralized Binary Patterns Embedded with Image Euclidean Distance for Facial Expression Recognition , 2008, 2008 Fourth International Conference on Natural Computation.

[105]  Hong Yang,et al.  A LBP-based Face Recognition Method with Hamming Distance Constraint , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[106]  Anil K. Jain,et al.  Heterogeneous Face Recognition Using Kernel Prototype Similarities , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[107]  Wen Gao,et al.  Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition , 2007, IEEE Transactions on Image Processing.

[108]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[109]  乔宇,et al.  Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification , 2013 .

[110]  Wen Gao,et al.  Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[111]  Kazuhiro Fukui,et al.  Rotation Invariant Co-occurrence among Adjacent LBPs , 2012, ACCV Workshops.

[112]  ZhangJ.,et al.  Local Features and Kernels for Classification of Texture and Object Categories , 2007 .

[113]  Paul W. Fieguth,et al.  Generalized Local Binary Patterns for Texture Classification , 2011, BMVC.

[114]  Olli Silvén,et al.  Wood Inspection With Non-Supervised Clustering , 2000 .

[115]  Ewout Vansteenkiste,et al.  Geometric local binary patterns a new approach to analyse texture in images , 2010 .

[116]  Shu Liao,et al.  Face Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude , 2007, ACCV.

[117]  Subrahmanyam Murala,et al.  Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval , 2012, IEEE Transactions on Image Processing.

[118]  Yee-Hong Yang,et al.  Noise robust rotation invariant features for texture classification , 2013, Pattern Recognit..

[119]  Matti Pietikäinen,et al.  Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[120]  Sanun Srisuk,et al.  Face Recognition with Local Line Binary Pattern , 2009, 2009 Fifth International Conference on Image and Graphics.

[121]  Baochang Zhang,et al.  Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor , 2010, IEEE Transactions on Image Processing.

[122]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[124]  Alice Caplier,et al.  Enhanced Patterns of Oriented Edge Magnitudes for Face Recognition and Image Matching , 2012, IEEE Transactions on Image Processing.

[125]  Di Huang,et al.  Local Binary Patterns and Its Application to Facial Image Analysis: A Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[126]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[127]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[128]  Loris Nanni,et al.  Local binary patterns variants as texture descriptors for medical image analysis , 2010, Artif. Intell. Medicine.

[129]  Matti Pietikäinen,et al.  Discriminative features for texture description , 2012, Pattern Recognit..

[130]  Ahmad Reza Naghsh-Nilchi,et al.  Noise tolerant local binary pattern operator for efficient texture analysis , 2012, Pattern Recognit. Lett..

[131]  Kai Wang,et al.  Pixel to Patch Sampling Structure and Local Neighboring Intensity Relationship Patterns for Texture Classification , 2013, IEEE Signal Processing Letters.

[132]  Zhenhua Guo,et al.  Robust Texture Image Representation by Scale Selective Local Binary Patterns , 2016, IEEE Transactions on Image Processing.

[133]  Til Aach,et al.  Texture Classification by Modeling Joint Distributions of Local Patterns With Gaussian Mixtures , 2010, IEEE Transactions on Image Processing.

[134]  ChenLiming,et al.  Local Binary Patterns and Its Application to Facial Image Analysis , 2011 .

[135]  Shuicheng Yan,et al.  Discriminative local binary patterns for human detection in personal album , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[136]  Bill Triggs,et al.  Visual Recognition Using Local Quantized Patterns , 2012, ECCV.

[137]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[138]  Subhransu Maji,et al.  Deep filter banks for texture recognition and segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  Benhur Ortiz Jaramillo,et al.  Improving textures discrimination in the local binary patterns technique by using symmetry & group theory , 2011, 2011 17th International Conference on Digital Signal Processing (DSP).

[140]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[141]  A. S. M. Shihavuddin,et al.  Compound local binary pattern (CLBP) for robust facial expression recognition , 2011, 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI).

[142]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.