Characterization of atomic defects on the photoluminescence in two‐dimensional materials using transmission electron microscope

Two‐dimensional material (2D) that possesses atomic thin geometry and remarkable properties is a star material for the fundamental researches and advanced applications. Defects in 2D materials are critical and fundamental to understand the chemical, physical, and optical properties. Photoluminescence arises in 2D materials owing to various physical phenomena including activator/dopant‐induced luminescence and defect‐related emissions, and so forth. With the advanced transmission electron microscopy (TEM) technologies, such as aberration correction and low voltage technologies, the morphology, chemical compositions and electronic structures of defects in 2D material could be directly characterized at the atomic scale. In this review, we introduce the applications of state‐of‐the‐art TEM technologies on the studies of the role of atomic defects in the photoluminescence characteristics in 2D material. The challenges in spatial and time resolution are also discussed. It is proved that TEM is a powerful tool to pinpoint the relationship between the defects and the photoluminescence characteristics.

[1]  W. Lu,et al.  Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. , 2017, Small.

[2]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[3]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[4]  H. Sawada,et al.  Atomic Structure and Spectroscopy of Single Metal (Cr, V) Substitutional Dopants in Monolayer MoS2. , 2016, ACS nano.

[5]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[6]  J. Ho,et al.  High‐Sensitivity Floating‐Gate Phototransistors Based on WS2 and MoS2 , 2016 .

[7]  Haimei Zheng,et al.  In Situ Study of Lithiation and Delithiation of MoS2 Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. , 2015, Nano letters.

[8]  M. G. Burke,et al.  X-ray Energy-Dispersive Spectrometry During In Situ Liquid Cell Studies Using an Analytical Electron Microscope , 2014, Microscopy and Microanalysis.

[9]  A. Krasheninnikov,et al.  Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. , 2012, The journal of physical chemistry letters.

[10]  Hua Xu,et al.  Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. , 2015, Angewandte Chemie.

[11]  W. Jie,et al.  Lanthanide Yb/Er co-doped semiconductor layered WSe2 nanosheets with near-infrared luminescence at telecommunication wavelengths. , 2018, Nanoscale.

[12]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[13]  Yu-heng Zhang,et al.  Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks , 2016, Proceedings of the National Academy of Sciences.

[14]  Jing Kong,et al.  Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics. , 2016, Nano letters.

[15]  B. Xiang,et al.  Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer WS2(1–x)Se2x with a Tunable Band Gap , 2015, Advances in Materials.

[16]  G. Bersuker,et al.  Probing and manipulating the interfacial defects of InGaAs dual-layer metal oxides at the atomic scale , 2018, 2018 China Semiconductor Technology International Conference (CSTIC).

[17]  E. Wang,et al.  High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. , 2013, Nature nanotechnology.

[18]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2016, Nature nanotechnology.

[19]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[20]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[21]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[22]  Peng Zhou,et al.  Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. , 2016, ACS nano.

[23]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[24]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[25]  S. Pantelides,et al.  Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. , 2014, Nano letters.

[26]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[27]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[28]  E. Wang,et al.  MoS_2 as an ideal material for valleytronics: valley-selective circular dichroism and valley Hall effect , 2011, 1112.4013.

[29]  T. Ren,et al.  Fabrication techniques and applications of flexible graphene-based electronic devices , 2016 .

[30]  Jian Zhang,et al.  Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors , 2018 .

[31]  Liping Wang,et al.  Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS₂. , 2015, ACS nano.

[32]  F. Miao,et al.  Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions , 2017, Nature Communications.

[33]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[34]  Wei Chen,et al.  Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers , 2013 .

[35]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[36]  Nan Wang,et al.  Manganese Doping of Monolayer MoS2: The Substrate Is Critical. , 2015, Nano letters.

[37]  Calvin Pei Yu Wong,et al.  Photoluminescence Upconversion by Defects in Hexagonal Boron Nitride. , 2018, Nano letters.

[38]  P. Ajayan,et al.  Nanomechanical cleavage of molybdenum disulphide atomic layers , 2014, Nature Communications.

[39]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[40]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[41]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[42]  Xing Wu,et al.  Evolution of Filament Formation in Ni/HfO2/SiOx/Si‐Based RRAM Devices , 2015 .

[43]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[44]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[45]  S. Pantelides,et al.  Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. , 2015, ACS nano.

[46]  Operating principles of vertical transistors based on monolayer two-dimensional semiconductor heterojunctions , 2014, 1408.3026.

[47]  Weida Hu,et al.  Room-Temperature Single-Photon Detector Based on Single Nanowire. , 2018, Nano letters.

[48]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[49]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[50]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[51]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[52]  Y. Chai,et al.  Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes , 2016, Nature Communications.

[53]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[54]  Qi Liu,et al.  Atomic Scale Modulation of Self‐Rectifying Resistive Switching by Interfacial Defects , 2018, Advanced science.

[55]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[56]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[57]  S. Lau,et al.  2D Layered Materials of Rare‐Earth Er‐Doped MoS2 with NIR‐to‐NIR Down‐ and Up‐Conversion Photoluminescence , 2016, Advanced materials.

[58]  Nagarajan Raghavan,et al.  Electrode material dependent breakdown and recovery in advanced high-κ gate stacks , 2010 .

[59]  Lifeng Liu,et al.  Direct Observations of Nanofilament Evolution in Switching Processes in HfO2‐Based Resistive Random Access Memory by In Situ TEM Studies , 2017, Advanced materials.

[60]  Jonghwan Kim,et al.  Reconfiguring crystal and electronic structures of MoS2 by substitutional doping , 2018, Nature Communications.

[61]  Wei Lu,et al.  Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. , 2015, Small.

[62]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[63]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[64]  S. Mahapatra,et al.  Theoretical Insights to Niobium-Doped Monolayer MoS2–Gold Contact , 2015, IEEE Transactions on Electron Devices.

[65]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[66]  G. Shen,et al.  Photodetectors based on two dimensional materials , 2016 .

[67]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[68]  M. Seong,et al.  Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure. , 2017, ACS nano.

[69]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[70]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[71]  Weida Hu,et al.  Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure. , 2017, ACS applied materials & interfaces.

[72]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[73]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[74]  Chunsen Liu,et al.  A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications , 2018, Nature Nanotechnology.

[75]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[76]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[77]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[78]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[79]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[80]  Peng Wang,et al.  Progress, Challenges, and Opportunities for 2D Material Based Photodetectors , 2018, Advanced Functional Materials.

[81]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[82]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[83]  Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. , 2014, Nature communications.

[84]  L. Ang,et al.  Enhanced stability of filament-type resistive switching by interface engineering , 2017, Scientific Reports.

[85]  W. Jie,et al.  Luminescence in 2D Materials and van der Waals Heterostructures , 2018 .

[86]  Noah D Bronstein,et al.  Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell. , 2017, Nano letters.

[87]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[88]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[89]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[90]  Yu Zhang,et al.  Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures , 2018, Science Advances.

[91]  Jiwon Jeon,et al.  Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. , 2014, ACS nano.

[92]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[93]  Xing Wu,et al.  Properties of graphene-metal contacts probed by Raman spectroscopy , 2018 .

[94]  Ying-Sheng Huang,et al.  Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. , 2014, Advanced materials.

[95]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[96]  Ole Bethge,et al.  A microprocessor based on a two-dimensional semiconductor , 2016, Nature Communications.

[97]  F. Guinea,et al.  Enhanced superconductivity in atomically thin TaS2 , 2016, Nature Communications.

[98]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[99]  C. Gu,et al.  CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. , 2014, Nanoscale.

[100]  Tongtong Jiang,et al.  CVD synthesis of Mo((1-x))W(x)S2 and MoS(2(1-x))Se(2x) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. , 2015, Nanoscale.

[101]  Xing Wu,et al.  In Situ Transmission Electron Microscopy Characterization and Manipulation of Two-Dimensional Layered Materials beyond Graphene. , 2017, Small.

[102]  J. Miyazaki,et al.  Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating , 2015, Scientific Reports.