Multi-level phase-change memory with ultralow power consumption and resistance drift.

[1]  X. Miao,et al.  Three Resistance States Achieved by Nanocrystalline Decomposition in Ge‐Ga‐Sb Compound for Multilevel Phase Change Memory , 2021, Advanced Electronic Materials.

[2]  X. Miao,et al.  Recent Advances on Neuromorphic Devices Based on Chalcogenide Phase‐Change Materials , 2020, Advanced Functional Materials.

[3]  Wei Zhang,et al.  Unveiling the structural origin to control resistance drift in phase-change memory materials , 2020, Materials Today.

[4]  Zhitang Song,et al.  Y Doped Sb2Te3 Phase-Change Materials: Towards a Universal Memory. , 2020, ACS applied materials & interfaces.

[5]  D. Akinwande,et al.  Graphene and two-dimensional materials for silicon technology , 2019, Nature.

[6]  G. Burr,et al.  Phase-change memory cycling endurance , 2019, MRS Bulletin.

[7]  Wei Zhang,et al.  Phase-change heterostructure enables ultralow noise and drift for memory operation , 2019, Science.

[8]  T. Lee,et al.  Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5 , 2019, Nature Communications.

[9]  Luca Benini,et al.  In-memory hyperdimensional computing , 2019, Nature Electronics.

[10]  Abu Sebastian,et al.  Tutorial: Brain-inspired computing using phase-change memory devices , 2018, Journal of Applied Physics.

[11]  Daniel Krebs,et al.  Collective Structural Relaxation in Phase‐Change Memory Devices , 2018, Advanced Electronic Materials.

[12]  S. Elliott,et al.  Origin of radiation tolerance in amorphous Ge2Sb2Te5 phase-change random-access memory material , 2018, Proceedings of the National Academy of Sciences.

[13]  Ethan C. Ahn,et al.  Carbon nanomaterials for non-volatile memories , 2018 .

[14]  Daisuke Ando,et al.  Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization. , 2018, ACS Applied Materials and Interfaces.

[15]  Wei Zhang,et al.  Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing , 2017, Science.

[16]  Jian Zhou,et al.  Reduction of thermal conductivity in YxSb2–xTe3 for phase change memory , 2017 .

[17]  Suyoun Lee,et al.  Electrically Driven Reversible Phase Changes in Layered In2Se3 Crystalline Film , 2017, Advanced materials.

[18]  J. Yeo,et al.  Atomic Migration Induced Crystal Structure Transformation and Core-Centered Phase Transition in Single Crystal Ge2Sb2Te5 Nanowires. , 2016, Nano letters.

[19]  Jian Zhou,et al.  Yttrium-Doped Sb2Te3: A Promising Material for Phase-Change Memory. , 2016, ACS applied materials & interfaces.

[20]  Songlin Feng,et al.  Direct observation of metastable face-centered cubic Sb2Te3 crystal , 2016, Nano Research.

[21]  Marcel A. Verheijen,et al.  Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb₂Te₃ superlattices. , 2015, Nanoscale.

[22]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[23]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[24]  R. Ahuja,et al.  First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections , 2014 .

[25]  Weijie Wang,et al.  Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials , 2012, Scientific Reports.

[26]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[27]  S. G. Bishop,et al.  Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid , 2009, Science.

[28]  A. Pirovano,et al.  A physics-based model of electrical conduction decrease with time in amorphous Ge2Sb2Te5 , 2009 .

[29]  Frederick T. Chen,et al.  Impact of incomplete set programing on the performance of phase change memory cell , 2008 .

[30]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[31]  Rajeev Ahuja,et al.  Unique melting behavior in phase-change materials for rewritable data storage. , 2007, Physical review letters.

[32]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[33]  L. Pileggi,et al.  Phase change random access memory, thermal analysis , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[34]  Bingchu Cai,et al.  Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory , 2005 .

[35]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[36]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[37]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[42]  K. Samwer Amorphisation in solid metallic systems , 1988 .

[43]  W. C. Michels,et al.  The Thermal Conductivity of Tungsten , 1936 .

[44]  Wei Zhang,et al.  Designing crystallization in phase-change materials for universal memory and neuro-inspired computing , 2019, Nature Reviews Materials.