Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils

Non-destructive imaging techniques can be extremely useful tools for the investigation and the assessment of palaeontological objects, as mechanical preparation of rare and valuable fossils is precluded in most cases. However, palaeontologists are often faced with the problem of choosing a method among a wide range of available techniques. In this case study, we employ x-ray computed tomography (CT) and computed laminography (CL) to study the first fossil xiphosuran from the Muschelkalk (Middle Triassic) of the Netherlands. The fossil is embedded in micritic limestone, with the taxonomically important dorsal shield invisible, and only the outline of its ventral part traceable. We demonstrate the complementarity of CT and CL which offers an excellent option to visualize characteristic diagnostic features. We introduce augmented laminography to correlate complementary information of the two methods in Fourier space, allowing to combine their advantages and finally providing increased anatomical information about the fossil. This method of augmented laminography enabled us to identify the xiphosuran as a representative of the genus Limulitella.

[1]  W. Ausich,et al.  Treatise on Invertebrate Paleontology , 1965 .

[2]  W. Kalender X-ray computed tomography , 2006, Physics in medicine and biology.

[3]  J. Affeldt,et al.  The feasibility study , 2019, The Information System Consultant’s Handbook.

[4]  P. Cloetens,et al.  High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography , 2005 .

[5]  Lei Zhu,et al.  Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: first patient studies. , 2012, Medical physics.

[6]  Jürgen Weese,et al.  Projection extension for region of interest imaging in cone-beam CT. , 2005, Academic radiology.

[7]  Daniel Kolditz,et al.  Volume-of-interest (VOI) imaging in C-arm flat-detector CT for high image quality at reduced dose. , 2010, Medical physics.

[8]  S. Xiao,et al.  RESOLVING THREE-DIMENSIONAL AND SUBSURFICIAL FEATURES OF CARBONACEOUS COMPRESSIONS AND SHELLY FOSSILS USING BACKSCATTERED ELECTRON SCANNING ELECTRON MICROSCOPY (BSE-SEM) , 2015 .

[9]  M W Vannier,et al.  Noninvasive Three-Dimensional Computer Imaging of Matrix-Filled Fossil Skulls by High-Resolution Computed Tomography , 1984, Science.

[10]  S. Xiao,et al.  Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis , 2015 .

[11]  R. McKay,et al.  A new Ordovician arthropod from the Winneshiek Lagerstätte of Iowa (USA) reveals the ground plan of eurypterids and chasmataspidids , 2015, The Science of Nature.

[12]  Günter Lauritsch,et al.  Theoretical framework for filtered back projection in tomosynthesis , 1998, Medical Imaging.

[13]  Mark D Sutton,et al.  Tomographic techniques for the study of exceptionally preserved fossils , 2008, Proceedings of the Royal Society B: Biological Sciences.

[14]  P. Selden,et al.  The origin of the limuloids , 1987 .

[15]  R. Moore,et al.  Treatise on Invertebrate Paleontology , 1950 .

[16]  Michael Knaup,et al.  New approaches to region of interest computed tomography. , 2011, Medical physics.

[17]  J. Bergström,et al.  Weinbergina, a xiphosuran arthropod from the devonian hunsrück slate , 1981 .

[18]  G. Nowlan,et al.  THE OLDEST HORSESHOE CRAB: A NEW XIPHOSURID FROM LATE ORDOVICIAN KONSERVAT‐LAGERSTÄTTEN DEPOSITS, MANITOBA, CANADA , 2008 .

[19]  M. Sutton,et al.  A Silurian ‘marrellomorph’ arthropod , 2007, Proceedings of the Royal Society B: Biological Sciences.

[20]  D. Fisher The Xiphosurida: Archetypes of Bradytely? , 1984 .

[21]  Achim H. Schwermann,et al.  Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference , 2016, eLife.

[22]  Alexander Riedel,et al.  Sayrevilleinae Legalov, a newly recognised subfamily of fossil weevils (Coleoptera, Curculionoidea, Attelabidae) and the use of synchrotron microtomography to examine inclusions in amber , 2012 .

[23]  M. Sutton,et al.  Silurian horseshoe crab illuminates the evolution of arthropod limbs , 2012, Proceedings of the National Academy of Sciences.

[24]  J. Schiffbauer,et al.  Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: A new view of complexity in early eukaryotic organisms , 2009 .

[25]  P. Selden,et al.  Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura , 2007 .

[26]  S. Ferrari,et al.  Author contributions , 2021 .

[27]  K. Hoffmann,et al.  Rotational micro-CT using a clinical C-arm angiography gantry. , 2008, Medical physics.

[28]  Luo Ouyang,et al.  Few-view cone-beam CT reconstruction with deformed prior image. , 2014, Medical physics.

[29]  J. Gall Faunes et paysages du Grès à Voltzia du nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur , 1971 .

[30]  P. Tafforeau,et al.  Three-Dimensional Pelvis and Limb Anatomy of the Cenomanian Hind-Limbed Snake Eupodophis descouensi (Squamata, Ophidia) Revealed by Synchrotron-Radiation Computed Laminography , 2011 .

[31]  Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura , 2013 .

[32]  N. Eldredge,et al.  Revision of the suborder Synziphosurina (Chelicerata, Merostomata) : with remarks on merostome phylogeny. American Museum novitates ; no. 2543 , 1974 .

[33]  Min Hyoung Cho,et al.  X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability. , 2004, Physics in medicine and biology.

[34]  D. G. Grant Tomosynthesis: a three-dimensional radiographic imaging technique. , 1972, IEEE transactions on bio-medical engineering.

[35]  A. Bravin,et al.  Applications of X-ray synchrotron microtomography for non-destructive 3 D studies of paleontological specimens , 2006 .

[36]  F. Whitmore,et al.  Machine for serial sectioning of fossils , 1944 .

[37]  Imran A. Rahman,et al.  Techniques for Virtual Palaeontology: Sutton/Techniques for Virtual Palaeontology , 2013 .

[38]  Lei Zhu,et al.  Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images. , 2010, Medical physics.

[39]  J. Baruchel,et al.  On the implementation of computed laminography using synchrotron radiation. , 2011, The Review of scientific instruments.

[40]  R. Ketcham,et al.  Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences , 2001 .

[41]  W. J. Sollas A method for the investigation of fossils by serial sections , 1904, Proceedings of the Royal Society of London.

[42]  D. Rudkin,et al.  Horseshoe Crabs – An Ancient Ancestry Revealed , 2009 .

[43]  Volker Wilde,et al.  Paleolimulus fuchsbergensis n. sp. (Xiphosura, Merostomata) aus der oberen Trias von Nordwestdeutschland, mit einer Übersicht zur Systematik und Verbreitung rezenter Limuliden , 1987 .

[44]  J. Lamsdell Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation , 2016 .

[45]  K. Carlson,et al.  Synchrotron Reveals Early Triassic Odd Couple: Injured Amphibian and Aestivating Therapsid Share Burrow , 2013, PloS one.

[46]  Allan S. Jones,et al.  Iconography : Synchrotron X-ray imaging of inclusions in amber , 2010 .

[47]  Leif Stoermer Phylogeny and taxonomy of fossil horseshoe crabs , 1952 .

[48]  S. Walsh,et al.  Modern imaging techniques as a window to prehistoric auditory worlds , 2013 .

[49]  C. Diedrich Vertebrate track bed stratigraphy of the Röt and basal Lower Muschelkalk (Anisian) of Winterswijk (East Netherlands) , 2001, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[50]  Tianpeng Wang,et al.  Dual resolution cone beam breast CT: a feasibility study. , 2009, Medical physics.

[51]  Imran A. Rahman,et al.  Techniques for Virtual Palaeontology , 2014 .