Critical surface albedo and its implications to aerosol remote sensing

Abstract. We analyse the critical surface albedo (CSA) and its implications to aerosol remote sensing. CSA is defined as the surface albedo where the reflectance at top-of-atmosphere (TOA) does not depend on aerosol optical depth (AOD). AOD retrievals are therefore inaccurate at the CSA. The CSA is obtained by derivatives of the TOA reflectance with respect to AOD using a radiative transfer code. We present the CSA and the effect of surface albedo uncertainties on AOD retrieval and atmospheric correction as a function of aerosol single-scattering albedo, illumination and observation geometry, wavelength and AOD. In general, increasing aerosol absorption and increasing scattering angles lead to lower CSA. In contrast to the strict definition of the CSA, we show that the CSA can also slightly depend on AOD and therefore rather represent a small range of surface albedo values. This was often neglected in previous studies. The following implications to aerosol remote sensing applications were found: (i) surface albedo uncertainties result in large AOD retrieval errors, particularly close to the CSA; (ii) AOD retrievals of weakly or non-absorbing aerosols require dark surfaces, while strongly absorbing aerosols can be retrieved more accurately over bright surfaces; (iii) the CSA may help to estimate aerosol absorption; and (iv) the presented sensitivity of the reflectance at TOA to AOD provides error estimations to optimise AOD retrieval algorithms.

[1]  Philip Watts,et al.  Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory , 2010 .

[2]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[3]  Michael E. Schaepman,et al.  Fast retrieval of aerosol optical depth and its sensitivity to surface albedo using remote sensing data , 2012 .

[4]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[5]  Stefan Wunderle,et al.  Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI data and accuracy assessment with ground-based AERONET measurements , 2007 .

[6]  Jens Nieke,et al.  Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing , 2008, Sensors.

[7]  Larry W. Thomason,et al.  Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses , 1996 .

[8]  A. Kokhanovsky,et al.  Satellite Aerosol Remote Sensing Over Land , 2009 .

[9]  J. W. Chamberlain,et al.  Light Scattering in Planetary Atmospheres , 1976 .

[10]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[11]  B. Brunekreef,et al.  Air pollution and health , 2002, The Lancet.

[12]  V. Sobolev Chapter 11 – SPHERICAL ATMOSPHERES , 1975 .

[13]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[14]  Lorraine A. Remer,et al.  Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions , 2012 .

[15]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[16]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[18]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[19]  R. Fraser,et al.  The Relative Importance of Aerosol Scattering and Absorption in Remote Sensing , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[20]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[21]  Alexei Lyapustin,et al.  Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. , 2008, Applied optics.

[22]  A. Ångström The Albedo of Various Surfaces of Ground , 1925 .

[23]  Dominik Brunner,et al.  MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval , 2010 .

[24]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[25]  Jeffrey S. Reid,et al.  A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products , 2010 .

[26]  A. Hauser,et al.  Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe , 2010 .

[27]  Yoram J. Kaufman,et al.  Satellite sensing of aerosol absorption , 1987 .

[28]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[29]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[30]  S. Satheesh Aerosol radiative forcing over land: effect of surface and cloud reflection , 2002 .

[31]  R P Gauthier,et al.  Sensitivity of surface reflectance retrieval to uncertainties in aerosol optical properties. , 1994, Applied optics.

[32]  J. Vanderlei Martins,et al.  MODIS Aerosol Optical Depth Retrievals with high spatial resolution over an Urban Area using the Critical Reflectance , 2008 .

[33]  Richard Siddans,et al.  Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions , 2012 .

[34]  Lorraine A. Remer,et al.  Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method , 2011 .