KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial.

PURPOSE Activating mutation of the KRAS oncogene is an established predictive biomarker for resistance to anti-epidermal growth factor receptor (anti-EGFR) therapies in advanced colorectal cancer (aCRC). We wanted to determine whether KRAS and/or BRAF mutation is also a predictive biomarker for other aCRC therapies. PATIENTS AND METHODS The Medical Research Council Fluorouracil, Oxaliplatin and Irinotecan: Use and Sequencing (MRC FOCUS) trial compared treatment sequences including first-line fluorouracil (FU), FU/irinotecan or FU/oxaliplatin in aCRC. Tumor blocks were obtained from 711 consenting patients. DNA was extracted and KRAS codons 12, 13, and 61 and BRAF codon 600 were assessed by pyrosequencing. Mutation (mut) status was assessed first as a prognostic factor and then as a predictive biomarker for the benefit of adding irinotecan or oxaliplatin to FU. The association of BRAF-mut with loss of MLH1 was assessed by immunohistochemistry. RESULTS Three hundred eight (43.3%) of 711 patients had KRAS-mut and 56 (7.9%) of 711 had BRAF-mut. Mutation of KRAS, BRAF, or both was present in 360 (50.6%) of 711 patients. Mutation in either KRAS or BRAF was a poor prognostic factor for overall survival (OS; hazard ratio [HR], 1.40; 95% CI, 1.20 to 1.65; P < .0001) but had minimal impact on progression-free survival (PFS; HR, 1.16; 95% CI, 1.00 to 1.36; P = .05). Mutation status did not affect the impact of irinotecan or oxaliplatin on PFS or OS. BRAF-mut was weakly associated with loss of MLH1 staining (P = .012). CONCLUSION KRAS/BRAF mutation is associated with poor prognosis but is not a predictive biomarker for irinotecan or oxaliplatin. There is no evidence that patients with KRAS/BRAF mutated tumors are less likely to benefit from these standard chemotherapy agents.

[1]  Francesca Molinari,et al.  PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. , 2009, Cancer research.

[2]  Seta Shahin,et al.  A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  R. Kaplan,et al.  Toxicity associated with combination oxaliplatin plus fluoropyrimidine with or without cetuximab in the MRC COIN trial experience , 2009, British Journal of Cancer.

[4]  S. Andreola,et al.  PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[5]  L. Mazzucchelli,et al.  Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  Dongsheng Tu,et al.  K-ras mutations and benefit from cetuximab in advanced colorectal cancer. , 2008, The New England journal of medicine.

[7]  J. Barrett,et al.  Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  Sabine Tejpar,et al.  KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience , 2008 .

[9]  C. Punt,et al.  Randomized phase III study of capecitabine, oxaliplatin, and bevacizumab with or without cetuximab in advanced colorectal cancer (ACC), the CAIRO2 study of the Dutch Colorectal Cancer Group (DCCG) , 2008 .

[10]  C. Bokemeyer,et al.  KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: The OPUS experience , 2008 .

[11]  Pierre Laurent-Puig,et al.  Mutations in the RAS‐MAPK, PI(3)K (phosphatidylinositol‐3‐OH kinase) signaling network correlate with poor survival in a population‐based series of colon cancers , 2008, International journal of cancer.

[12]  C. Bokemeyer Bleomycin in testicular cancer: will pharmacogenomics improve treatment regimens? , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  Daniel J. Freeman,et al.  Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  Richard J Stephens,et al.  Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial , 2007, The Lancet.

[15]  Manuel Hidalgo,et al.  Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  T. Frebourg,et al.  Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy , 2007, British Journal of Cancer.

[17]  Silvia Benvenuti,et al.  Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. , 2007, Cancer research.

[18]  P Tappenden,et al.  Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer. , 2007, Health technology assessment.

[19]  J. Baselga,et al.  The Epidermal Growth Factor Receptor Pathway: A Model for Targeted Therapy , 2006, Clinical Cancer Research.

[20]  John Mendelsohn,et al.  Epidermal growth factor receptor targeting in cancer. , 2006, Seminars in oncology.

[21]  M. Parmar,et al.  Prognostic value of thymidylate synthase (TS) expression on failure-free survival of fluorouracil-treated metastatic colorectal cancer patients. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  A. Lièvre,et al.  KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. , 2006, Cancer research.

[23]  R. Wolff,et al.  Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. , 2005, Cancer research.

[24]  Hiroyuki Yamamoto,et al.  BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes , 2005, Oncogene.

[25]  L. Schwartz,et al.  Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  Armando Santoro,et al.  Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. , 2004, The New England journal of medicine.

[27]  M. Stratton,et al.  The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website , 2004, British Journal of Cancer.

[28]  J. Berlin,et al.  Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. , 2004, The New England journal of medicine.

[29]  G. Deng,et al.  BRAF Mutation Is Frequently Present in Sporadic Colorectal Cancer with Methylated hMLH1, But Not in Hereditary Nonpolyposis Colorectal Cancer , 2004, Clinical Cancer Research.

[30]  B. Leggett,et al.  Promoter Hypermethylation Frequency and BRAF Mutations Distinguish Hereditary Non-Polyposis Colon Cancer from Sporadic MSI-H Colon Cancer , 2004, Familial Cancer.

[31]  이석호,et al.  Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study , 2001, British Journal of Cancer.

[32]  L. Saltz,et al.  Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. , 2000, The New England journal of medicine.

[33]  C. Wilson,et al.  Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  R. James,et al.  Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial , 2000, The Lancet.

[35]  P. Quirke,et al.  Choice of management strategy for colorectal cancer based on a diagnostic immunohistochemical test for defective mismatch repair , 1999, Gut.

[36]  P. Peltomäki,et al.  Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. , 1997, Gastroenterology.

[37]  M. Loda,et al.  Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. , 1997, Cancer research.

[38]  S. Finkelstein,et al.  Genotypic classification of colorectal adenocarcinoma. Biologic behavior correlates with K‐ras‐2 mutation type , 1993, Cancer.

[39]  J. Mecklin,et al.  The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC) , 1991, Diseases of the colon and rectum.

[40]  B. Vogelstein,et al.  Prevalence of ras gene mutations in human colorectal cancers , 1987, Nature.