Strong KKT conditions and weak sharp solutions in convex-composite optimization

Using variational analysis techniques, we study convex-composite optimization problems. In connection with such a problem, we introduce several new notions as variances of the classical KKT conditions. These notions are shown to be closely related to the notions of sharp or weak sharp solutions. As applications, we extend some results on metric regularity of inequalities from the convex case to the convex-composite case.

[1]  R. Rockafellar First- and second-order epi-differentiability in nonlinear programming , 1988 .

[2]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[3]  Chong Li,et al.  Majorizing Functions and Convergence of the Gauss--Newton Method for Convex Composite Optimization , 2007, SIAM J. Optim..

[4]  Chong Li,et al.  On convergence of the Gauss-Newton method for convex composite optimization , 2002, Math. Program..

[5]  Richard A. Tapia,et al.  An Extension of the Karush-Kuhn-Tucker Necessity Conditions to Infinite Programming , 1994, SIAM Rev..

[6]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[7]  Hui Hu,et al.  Characterizations of the Strong Basic Constraint Qualifications , 2005, Math. Oper. Res..

[8]  Robert S. Womersley,et al.  Local properties of algorithms for minimizing nonsmooth composite functions , 1985, Math. Program..

[9]  Jean-Paul Penot Optimality conditions in mathematical programming and composite optimization , 1994, Math. Program..

[10]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[11]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[12]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[13]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[14]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[15]  Sien Deng,et al.  Weak sharp minima revisited, Part III: error bounds for differentiable convex inclusions , 2008, Math. Program..

[16]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[17]  Xi Yin Zheng,et al.  Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..

[18]  Wu Li,et al.  Abadie's Constraint Qualification, Metric Regularity, and Error Bounds for Differentiable Convex Inequalities , 1997, SIAM J. Optim..

[19]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[20]  Xi Yin Zheng,et al.  Linear Regularity for a Collection of Subsmooth Sets in Banach Spaces , 2008, SIAM J. Optim..

[21]  Hui Hu Characterizations of Local and Global Error Bounds for Convex Inequalities in Banach Spaces , 2007, SIAM J. Optim..

[22]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[23]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[24]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[25]  Xiaoqi Yang,et al.  Convex composite multi-objective nonsmooth programming , 1993, Math. Program..

[26]  Marcin Studniarski,et al.  Weak Sharp Minima: Characterizations and Sufficient Conditions , 1999, SIAM J. Control. Optim..

[27]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[28]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[29]  Dinh The Luc,et al.  Convex composite non–Lipschitz programming , 2002, Math. Program..

[30]  NG K.F. MAJORIZING FUNCTIONS AND CONVERGENCE OF THE GAUSS–NEWTON METHOD FOR CONVEX COMPOSITE OPTIMIZATION∗ , 2007 .

[31]  Xi Yin Zheng,et al.  Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces , 2007, SIAM J. Optim..