Fourier Analysis in Convex Geometry
暂无分享,去创建一个
[1] J. Lindenstrauss. On the extension of operators with a finite-dimensional range , 1964 .
[2] D. Widder,et al. The Laplace Transform , 1943, The Mathematical Gazette.
[3] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[4] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[5] R. Schneider. Zu einem Problem von Shephard über die Projektionen konvexer Körper , 1967 .
[6] A. Koldobsky. Intersection bodies, positive definite distributions, and the Busemann-Petty problem , 1998 .
[7] Erwin Lutwak,et al. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , 1993 .
[8] Helly. Aufgaben und Lehrsätze aus der Analysis , 1928 .
[9] V. Zolotarev. One-dimensional stable distributions , 1986 .
[10] Erwin Lutwak,et al. L p Affine Isoperimetric Inequalities , 2000 .
[11] Zonoids whose polars are zonoids , 1975 .
[12] Gaoyong Zhang,et al. Centered bodies and dual mixed volumes , 1994 .
[13] A functional analytic approach to intersection bodies , 2000 .
[14] A. Koldobsky. Positive Definite Distributions and Subspaces of L_ p With Applications to Stable Processes , 1996, Canadian Mathematical Bulletin.
[15] J. Misiewicz. Norm dependent positive definite functions and measures on vector spaces , 1989 .
[16] C. Rogers,et al. The existence of a centrally symmetric convex body with central sections that are unexpectedly small , 1975 .
[17] V. Milman,et al. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .
[18] A. Koldobsky. The Busemann¿Petty problem via spherical harmonics , 2003 .
[19] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[20] Erwin Lutwak,et al. The Brunn–Minkowski–Firey Theory II: Affine and Geominimal Surface Areas , 1996 .
[21] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[22] Krzysztof Oleszkiewicz,et al. On p-Pseudostable Random Variables, Rosenthal Spaces and lpn Ball Slicing , 2003 .
[23] E. Lutwak,et al. A new ellipsoid associated with convex bodies , 2000 .
[24] Victor P Zastavnyi,et al. On Positive Definiteness of Some Functions , 2000 .
[25] P. Laplace. Théorie analytique des probabilités , 1995 .
[26] A. Zvavitch. Gaussian Measure of Sections of convex bodies , 2004 .
[27] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[28] On norm-dependent positive definite functions , 1990 .
[29] B. Maurey,et al. Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces LP , 1974 .
[30] Werner Linde,et al. Probability in Banach Spaces: Stable and Infinitely Divisible Distributions , 1986 .
[31] E. M. Nikishin. RESONANCE THEOREMS and SUPERLINEAR OPERATORS , 1970 .
[32] J. Thorpe. Elementary Topics in Differential Geometry , 1979 .
[33] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[34] Boris Rubin,et al. Inversion formulas for the spherical Radon transform and the generalized cosine transform , 2002, Adv. Appl. Math..
[35] Gaoyong Zhang. Intersection bodies and the Busemann-Petty inequalities in $\mathbb{R}^4$ , 1994 .
[36] Donald St. P. Richards. Positive definite symmetric functions on finite-dimensional spaces II , 1985 .
[37] On the derivatives of X-ray functions , 2002 .
[38] Positive definite norm dependent functions on l , 1989 .
[39] Gaoyong Zhang,et al. Generalizations of the Busemann–Petty problem for sections of convex bodies , 2004 .
[40] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[41] Gaoyong Zhang. Sections of convex bodies , 1996 .
[42] A. Koldobsky. SECTIONS OF STAR BODIES AND THE FOURIER TRANSFORM , 2002 .
[43] A. Koldobsky. A generalization of the Busemann-Petty problem on sections of convex bodies , 1999 .
[44] Alexander Koldobsky. Comparison of volumes by means of the areas of central sections , 2004, Adv. Appl. Math..