Fourier Analysis in Convex Geometry

Introduction Basic concepts Volume and the Fourier transform Intersection bodies The Busemann-Petty problem Intersection bodies and $L_p$-spaces Extremal sections of $\ell_q$-balls Projections and the Fourier transform Bibliography Index.

[1]  J. Lindenstrauss On the extension of operators with a finite-dimensional range , 1964 .

[2]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[3]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[4]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[5]  R. Schneider Zu einem Problem von Shephard über die Projektionen konvexer Körper , 1967 .

[6]  A. Koldobsky Intersection bodies, positive definite distributions, and the Busemann-Petty problem , 1998 .

[7]  Erwin Lutwak,et al.  The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , 1993 .

[8]  Helly Aufgaben und Lehrsätze aus der Analysis , 1928 .

[9]  V. Zolotarev One-dimensional stable distributions , 1986 .

[10]  Erwin Lutwak,et al.  L p Affine Isoperimetric Inequalities , 2000 .

[11]  Zonoids whose polars are zonoids , 1975 .

[12]  Gaoyong Zhang,et al.  Centered bodies and dual mixed volumes , 1994 .

[13]  A functional analytic approach to intersection bodies , 2000 .

[14]  A. Koldobsky Positive Definite Distributions and Subspaces of L_ p With Applications to Stable Processes , 1996, Canadian Mathematical Bulletin.

[15]  J. Misiewicz Norm dependent positive definite functions and measures on vector spaces , 1989 .

[16]  C. Rogers,et al.  The existence of a centrally symmetric convex body with central sections that are unexpectedly small , 1975 .

[17]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[18]  A. Koldobsky The Busemann¿Petty problem via spherical harmonics , 2003 .

[19]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[20]  Erwin Lutwak,et al.  The Brunn–Minkowski–Firey Theory II: Affine and Geominimal Surface Areas , 1996 .

[21]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[22]  Krzysztof Oleszkiewicz,et al.  On p-Pseudostable Random Variables, Rosenthal Spaces and lpn Ball Slicing , 2003 .

[23]  E. Lutwak,et al.  A new ellipsoid associated with convex bodies , 2000 .

[24]  Victor P Zastavnyi,et al.  On Positive Definiteness of Some Functions , 2000 .

[25]  P. Laplace Théorie analytique des probabilités , 1995 .

[26]  A. Zvavitch Gaussian Measure of Sections of convex bodies , 2004 .

[27]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[28]  On norm-dependent positive definite functions , 1990 .

[29]  B. Maurey,et al.  Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces LP , 1974 .

[30]  Werner Linde,et al.  Probability in Banach Spaces: Stable and Infinitely Divisible Distributions , 1986 .

[31]  E. M. Nikishin RESONANCE THEOREMS and SUPERLINEAR OPERATORS , 1970 .

[32]  J. Thorpe Elementary Topics in Differential Geometry , 1979 .

[33]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[34]  Boris Rubin,et al.  Inversion formulas for the spherical Radon transform and the generalized cosine transform , 2002, Adv. Appl. Math..

[35]  Gaoyong Zhang Intersection bodies and the Busemann-Petty inequalities in $\mathbb{R}^4$ , 1994 .

[36]  Donald St. P. Richards Positive definite symmetric functions on finite-dimensional spaces II , 1985 .

[37]  On the derivatives of X-ray functions , 2002 .

[38]  Positive definite norm dependent functions on l , 1989 .

[39]  Gaoyong Zhang,et al.  Generalizations of the Busemann–Petty problem for sections of convex bodies , 2004 .

[40]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[41]  Gaoyong Zhang Sections of convex bodies , 1996 .

[42]  A. Koldobsky SECTIONS OF STAR BODIES AND THE FOURIER TRANSFORM , 2002 .

[43]  A. Koldobsky A generalization of the Busemann-Petty problem on sections of convex bodies , 1999 .

[44]  Alexander Koldobsky Comparison of volumes by means of the areas of central sections , 2004, Adv. Appl. Math..