Atomic‐Scale Design of Anode Materials for Alkali Metal (Li/Na/K)‐Ion Batteries: Progress and Perspectives

The development and optimization of high‐performance anode materials for alkali metal ion batteries is crucial for the green energy evolution. Atomic scale computational modeling such as density functional theory and molecular dynamics allows for efficient and adventurous materials design from the nanoscale, and have emerged as invaluable tools. Computational modeling cannot only provide fundamental insight, but also present input for multiscale models and experimental synthesis, often where quantities cannot readily be obtained by other means. In this review, an overview of three main anode classes; alloying, conversion, and intercalation‐type anodes, is provided and how atomic scale modeling is used to understand and optimize these materials for applications in lithium‐, sodium‐, and potassium‐ion batteries. In the last part of this review, a novel type of anode materials that are largely predicted from density functional theory simulations is presented. These 2D materials are currently in their early stages of development and are only expected to gain in importance in the years to come, both within the battery field and beyond, highlighting the ability of atomic scale materials design.

[1]  A. Walsh,et al.  Pushing the boundaries of lithium battery research with atomistic modelling on different scales , 2021, Progress in Energy.

[2]  H. Yang,et al.  Cubic Spinel XIn2S4 (X = Fe, Co, Mn): A New Type of Anode Material for Superfast and Ultrastable Na‐Ion Storage , 2021, Advanced Energy Materials.

[3]  Fei Chen,et al.  Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries , 2021, Journal of Advanced Ceramics.

[4]  Junxiong Wu,et al.  Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations , 2021, Nano Energy.

[5]  Baoling Huang,et al.  Morphology, chemistry, performance trident: Insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries , 2021 .

[6]  Yongyao Xia,et al.  Advanced Electrolyte Design for High-Energy-Density Li Metal Batteries under Practical Conditions. , 2021, Angewandte Chemie.

[7]  Xiangming He,et al.  Graphite as anode materials: Fundamental mechanism, recent progress and advances , 2021 .

[8]  Q. Cai,et al.  Defects in Hard Carbon: Where Are They Located and How Does the Location Affect Alkaline Metal Storage? , 2021, Small.

[9]  H. Yang,et al.  MXene‐Based Materials for Electrochemical Sodium‐Ion Storage , 2021, Advanced science.

[10]  Dongbin Xiong,et al.  Rational design of MXene-based films for energy storage: Progress, prospects , 2021, Materials Today.

[11]  David J. Singh,et al.  Search for potential K ion battery cathodes by first principles , 2021, Journal of Energy Chemistry.

[12]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[13]  A. Matic,et al.  Effect of the Niobium Doping Concentration on the Charge Storage Mechanism of Mesoporous Anatase Beads as an Anode for High-Rate Li-Ion Batteries , 2020, ACS Applied Energy Materials.

[14]  Ying Wang,et al.  Probing pristine and defective NiB6 monolayer as promising anode materials for Li/Na/K ion batteries , 2020 .

[15]  Jingyu Sun,et al.  Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries , 2020, Advanced Functional Materials.

[16]  D. Mitlin,et al.  Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes , 2020, Advanced Energy Materials.

[17]  J. Tarascon,et al.  Solid state chemistry for developing better metal-ion batteries , 2020, Nature Communications.

[18]  Xiuyan Li,et al.  Achieving superior high-capacity K-ion batteries with the C57 carbon monolayer anode by first-principles calculations , 2020 .

[19]  Q. Cai,et al.  Sodium Storage Mechanism Investigations through Structural Changes in Hard Carbons , 2020 .

[20]  Volker L. Deringer Modelling and understanding battery materials with machine-learning-driven atomistic simulations , 2020, Journal of Physics: Energy.

[21]  Tanveer Hussain,et al.  The adsorption and migration behavior of divalent metals (Mg, Ca, and Zn) on pristine and defective graphene , 2020 .

[22]  Q. Cai,et al.  Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries , 2020 .

[23]  P. Lu,et al.  First-principles study of two-dimensional zirconium nitrogen compounds: Anode materials for Na-ion batteries , 2020 .

[24]  Y. Gong,et al.  Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte , 2020, Advanced Energy Materials.

[25]  Zhiguo Wang,et al.  Mechanical Properties of Two-Dimensional Materials (Graphene, Silicene and MoS2 Monolayer) Upon Lithiation , 2020, Journal of Electronic Materials.

[26]  D. Aurbach,et al.  Current status and future directions of multivalent metal-ion batteries , 2020, Nature Energy.

[27]  G. Ceder,et al.  Electrodeposition and Mechanical Stability at Lithium-Solid Electrolyte Interface during Plating in Solid-State Batteries , 2020 .

[28]  Liang Li,et al.  Theoretical Simulation and Modeling of Three-Dimensional Batteries , 2020 .

[29]  Xiaodong Li,et al.  Designing the efficient lithium diffusion and storage channels based on graphdiyne , 2020 .

[30]  Sen Xin,et al.  Materials Design for High‐Safety Sodium‐Ion Battery , 2020, Advanced Energy Materials.

[31]  Zhanwei Xu,et al.  Densified Metallic MoS2/Graphene Enabling Fast Potassium‐Ion Storage with Superior Gravimetric and Volumetric Capacities , 2020, Advanced Functional Materials.

[32]  Q. Cai,et al.  Progress in electrolytes for beyond-lithium-ion batteries , 2020 .

[33]  C. V. Singh,et al.  Dramatic improvement in the performance of graphene as Li/Na battery anodes with suitable electrolytic solvents , 2020 .

[34]  Jesse G. McDaniel,et al.  Free energy barriers for TMEA+, TMA+, and BF4- ion diffusion through nanoporous carbon electrodes , 2020 .

[35]  Yongxing Shen,et al.  Fracture behavior in battery materials , 2020, Journal of Physics: Energy.

[36]  A. Rogach,et al.  Anodes and Sodium‐Free Cathodes in Sodium Ion Batteries , 2020, Advanced Energy Materials.

[37]  Q. Cai,et al.  Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries , 2020, Advanced Energy Materials.

[38]  Q. Cai,et al.  Functionalized Two-Dimensional Nanoporous Graphene as Efficient Global Anode Materials for Li-, Na-, K-, Mg-, and Ca-Ion Batteries , 2020 .

[39]  Kang Xu,et al.  Deciphering the paradox between the Co-intercalation of sodium-solvent into graphite and its irreversible capacity , 2020 .

[40]  A. Manthiram A reflection on lithium-ion battery cathode chemistry , 2020, Nature Communications.

[41]  Christopher S. Johnson,et al.  Graphite Lithiation Under Fast Charging Conditions: Atomistic Modeling Insights , 2020, ECS Meeting Abstracts.

[42]  G. Zeng,et al.  Graphdiyne: A Rising Star of Electrocatalyst Support for Energy Conversion , 2020, Advanced Energy Materials.

[43]  Q. Cai,et al.  Synthesis and Electrochemical Properties of Bi2MoO6/Carbon Anode for Lithium-Ion Battery Application , 2020, Materials.

[44]  Yuan-Fang Zhang,et al.  Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage , 2020 .

[45]  Alan William Dougherty,et al.  Accelerating Atomic Catalyst Discovery by Theoretical Calculations‐Machine Learning Strategy , 2020, Advanced Energy Materials.

[46]  Tae-Hee Kim,et al.  Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries , 2020 .

[47]  Q. Cai,et al.  Elucidating the Effect of Planar Graphitic Layers and Cylindrical Pores on the Storage and Diffusion of Li, Na, and K in Carbon Materials , 2020, Advanced Functional Materials.

[48]  Y. Zhan,et al.  Recent Development of Mg Ion Solid Electrolyte , 2020, Frontiers in Chemistry.

[49]  Jiaguo Yu,et al.  3D Graphene‐Based H2‐Production Photocatalyst and Electrocatalyst , 2020, Advanced Energy Materials.

[50]  Xiaogang Zhang,et al.  Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries , 2020 .

[51]  Chen‐Zi Zhao,et al.  Controlling Dendrite Growth in Solid-State Electrolytes , 2020 .

[52]  Z. Deng,et al.  Rechargeable Alkali-Ion Battery Materials: Theory and Computation. , 2020, Chemical reviews.

[53]  Jun Lu,et al.  New Concepts in Electrolytes. , 2020, Chemical reviews.

[54]  Xiaobo Ji,et al.  Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review , 2020, Advanced Functional Materials.

[55]  E. Quartarone,et al.  Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries , 2020, Journal of The Electrochemical Society.

[56]  A. Chakraborty,et al.  Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2 , 2020 .

[57]  B. Dunn,et al.  Electrode Degradation in Lithium-Ion Batteries. , 2020, ACS nano.

[58]  T. Brezesinski,et al.  Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of SEI and its Formation Mechanism. , 2019, ACS applied materials & interfaces.

[59]  Zhen-Dong Huang,et al.  Ultralarge interlayer distance and C,N-codoping enable superior sodium storage capabilities of MoS2 nanoonions , 2019 .

[60]  M. Ashraf,et al.  RETRACTED: DFT examination of potential of adsorbed Gallium oxide and Tin dioxide to carbon nanocages as anodes in metal ion batteries , 2019 .

[61]  A. Yamada,et al.  Mechanism of Sodium Storage in Hard Carbon: An X‐Ray Scattering Analysis , 2019, Advanced Energy Materials.

[62]  Yongbing Tang,et al.  Multi-ion strategies towards emerging rechargeable batteries with high performance , 2019 .

[63]  Zhizhen Zhang,et al.  Coupled Cation-Anion Dynamics Enhances Cation Mobility in Room Temperature Superionic Solid-State Electrolytes. , 2019, Journal of the American Chemical Society.

[64]  B. Lucht,et al.  Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries , 2019, Joule.

[65]  Honglai Liu,et al.  First-Principles Study of Black Phosphorus as Anode Material for Rechargeable Potassium-Ion Batteries , 2019, Electronic Materials Letters.

[66]  Doreen Mollenhauer,et al.  Comparative study of density functionals for the description of lithium‐graphite intercalation compounds , 2019, J. Comput. Chem..

[67]  Bing Sun,et al.  Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High‐Energy Batteries , 2019, Advanced materials.

[68]  Gang Chen,et al.  Potassium ion storage properties of Alpha-graphdiyne investigated by first-principles calculations , 2019 .

[69]  H. Yang,et al.  Boosting Sodium Storage of Fe1−xS/MoS2 Composite via Heterointerface Engineering , 2019, Nano-Micro Letters.

[70]  P. Lu,et al.  Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries , 2019, Applied Surface Science.

[71]  Weishan Li,et al.  Recent research progresses in ether‐ and ester‐based electrolytes for sodium‐ion batteries , 2019, InfoMat.

[72]  Yan Yu,et al.  The Promise and Challenge of Phosphorus‐Based Composites as Anode Materials for Potassium‐Ion Batteries , 2019, Advanced materials.

[73]  A. Maignan,et al.  Impact of the iron substitution on the thermoelectric properties of Co1−xFexS2 (x ≤ 0.30) , 2019, Philosophical Transactions of the Royal Society A.

[74]  Erik J. Berg,et al.  Stable and instable diglyme-based electrolytes for batteries with sodium or graphite as electrode. , 2019, ACS applied materials & interfaces.

[75]  Zhaoxiang Wang,et al.  Sodium Storage Mechanism: Extended “Adsorption–Insertion” Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons (Adv. Energy Mater. 32/2019) , 2019, Advanced Energy Materials.

[76]  M. R. Palacín,et al.  Multivalent rechargeable batteries , 2019, Energy Storage Materials.

[77]  Xiaokun Gu,et al.  Thermal conductivity of single-layer MoS2(1−x)Se2x alloys from molecular dynamics simulations with a machine-learning-based interatomic potential , 2019, Computational Materials Science.

[78]  Joonkyung Jang,et al.  First-principles study on the two-dimensional siligene (2D SiGe) as an anode material of an alkali metal ion battery , 2019, Computational Materials Science.

[79]  R. Chandiramouli,et al.  Investigation on bare and hydrogenated Sb-nanosheets as an electrode material for Na-ion battery - A DFT study , 2019, Physica B: Condensed Matter.

[80]  Ji‐Guang Zhang,et al.  Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions , 2019, Nature Nanotechnology.

[81]  Yaxiang Lu,et al.  Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance , 2019, Advanced Functional Materials.

[82]  Jaehoon Kim,et al.  Revealing sodium ion storage mechanism in hard carbon , 2019, Carbon.

[83]  J. Xie,et al.  Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. , 2019, Small.

[84]  D. Brandell,et al.  Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? , 2019, Chemical reviews.

[85]  T. Rabczuk,et al.  Nanoporous graphene: A 2D semiconductor with anisotropic mechanical, optical and thermal conduction properties , 2019, Carbon.

[86]  Jiaqiang Huang,et al.  Correlation between the microstructure of carbon materials and their potassium ion storage performance , 2019, Carbon.

[87]  D. Ladha A review on density functional theory–based study on two-dimensional materials used in batteries , 2019, Materials Today Chemistry.

[88]  Stefano Passerini,et al.  Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry , 2019, Materials Today.

[89]  David J. Singh,et al.  Adsorption of Na on silicene for potential anode for Na-ion batteries , 2019, Electrochimica Acta.

[90]  Xin-bo Zhang,et al.  Alkali Metal Anodes for Rechargeable Batteries , 2019, Chem.

[91]  Mihui Park,et al.  Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries , 2019, Nature Communications.

[92]  S. Mukherjee,et al.  Two-Dimensional Anode Materials for Non-lithium Metal-Ion Batteries , 2019, ACS Applied Energy Materials.

[93]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[94]  N. Birbilis,et al.  Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries. , 2018, ACS applied materials & interfaces.

[95]  Zhibin Wu,et al.  Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries , 2018, Nano Energy.

[96]  Chenglong Zhao,et al.  Multi-electron reaction materials for sodium-based batteries , 2018, Materials Today.

[97]  Joonkyung Jang,et al.  Two-dimensional sheet of germanium selenide as an anode material for sodium and potassium ion batteries: First-principles simulation study , 2018, Computational Materials Science.

[98]  S. Dou,et al.  Recent progress on silicon-based anode materials for practical lithium-ion battery applications , 2018, Energy Storage Materials.

[99]  Yan Yu,et al.  Ultrathin Ti2Nb2O9 Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodium‐Ion Batteries , 2018, Advanced materials.

[100]  A. Gross,et al.  Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon , 2018, ACS Energy Letters.

[101]  Lin Xu,et al.  Interfaces in Solid-State Lithium Batteries , 2018, Joule.

[102]  D. Searles,et al.  Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study , 2018, Carbon.

[103]  H. Fan,et al.  Intercalation Na-ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution , 2018, Energy Storage Materials.

[104]  Zhizhen Zhang,et al.  Correlating Ion Mobility and Single Crystal Structure in Sodium-Ion Chalcogenide-Based Solid State Fast Ion Conductors: Na11Sn2PnS12 (Pn = Sb, P) , 2018 .

[105]  Jian Yang,et al.  Comprehensive New Insights and Perspectives into Ti‐Based Anodes for Next‐Generation Alkaline Metal (Na+, K+) Ion Batteries , 2018, Advanced Energy Materials.

[106]  X. Qu,et al.  Bamboo‐Like Hollow Tubes with MoS2/N‐Doped‐C Interfaces Boost Potassium‐Ion Storage , 2018, Advanced Functional Materials.

[107]  V. Thangadurai,et al.  Engineering Materials for Progressive All-Solid-State Na Batteries , 2018, ACS Energy Letters.

[108]  R. J. Gummow,et al.  Calcium‐Ion Batteries: Current State‐of‐the‐Art and Future Perspectives , 2018, Advanced materials.

[109]  Biao Zhang,et al.  Bismuth Microparticles as Advanced Anodes for Potassium‐Ion Battery , 2018 .

[110]  Yunhua Xu,et al.  Long cycle life and high rate sodium-ion chemistry for hard carbon anodes , 2018, Energy Storage Materials.

[111]  Wei Wang,et al.  Metallic Graphene‐Like VSe2 Ultrathin Nanosheets: Superior Potassium‐Ion Storage and Their Working Mechanism , 2018, Advanced materials.

[112]  Yongjiu Lei,et al.  Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient , 2018, Advanced Energy Materials.

[113]  Yijin Liu,et al.  Stable Carbon–Selenium Bonds for Enhanced Performance in Tremella‐Like 2D Chalcogenide Battery Anode , 2018, Advanced Energy Materials.

[114]  Doreen Mollenhauer,et al.  Graphite as Cointercalation Electrode for Sodium‐Ion Batteries: Electrode Dynamics and the Missing Solid Electrolyte Interphase (SEI) , 2018 .

[115]  M. Salanne,et al.  Computer simulation studies of nanoporous carbon-based electrochemical capacitors , 2018, Current Opinion in Electrochemistry.

[116]  Junhua Song,et al.  Interphases in Sodium‐Ion Batteries , 2018 .

[117]  Zhiqiang Niu,et al.  Graphene‐Based Nanomaterials for Sodium‐Ion Batteries , 2018 .

[118]  Jun Lu,et al.  Insights into the Na+ Storage Mechanism of Phosphorus‐Functionalized Hard Carbon as Ultrahigh Capacity Anodes , 2018 .

[119]  Daniel Brandell,et al.  Sodium‐Ion Battery Electrolytes: Modeling and Simulations , 2018 .

[120]  Yifei Mo,et al.  Computational Studies of Electrode Materials in Sodium‐Ion Batteries , 2018 .

[121]  Xinxin Zhao,et al.  Elucidation of the Sodium‐Storage Mechanism in Hard Carbons , 2018 .

[122]  Zonghai Chen,et al.  Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium‐Ion Batteries , 2018 .

[123]  Fernando A. Soto,et al.  Understanding Ionic Diffusion through SEI Components for Lithium-Ion and Sodium-Ion Batteries: Insights from First-Principles Calculations , 2018 .

[124]  Jun Chen,et al.  A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. , 2018, Angewandte Chemie.

[125]  S. Valenzuela,et al.  Bottom-up synthesis of multifunctional nanoporous graphene , 2018, Science.

[126]  D. Datta,et al.  Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study , 2018, Journal of Materials Science.

[127]  Dan Sun,et al.  MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries , 2018 .

[128]  R. Ahuja,et al.  Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure. , 2018, ACS Sensors.

[129]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[130]  L. Croguennec,et al.  Prospects for Li-ion Batteries and Emerging Energy Electrochemical Systems , 2018 .

[131]  Camelia Matei Ghimbeu,et al.  Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects , 2018 .

[132]  Jianqiu Deng,et al.  Sodium‐Ion Batteries: From Academic Research to Practical Commercialization , 2018 .

[133]  Yu Zhang,et al.  Alloy‐Based Anode Materials toward Advanced Sodium‐Ion Batteries , 2017, Advanced materials.

[134]  N. Sharma,et al.  An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries , 2017 .

[135]  Wei Lu,et al.  Superior Potassium Ion Storage via Vertical MoS2 "Nano-Rose" with Expanded Interlayers on Graphene. , 2017, Small.

[136]  Y. Qian,et al.  Few layer nitrogen-doped graphene with highly reversible potassium storage , 2017 .

[137]  A. Chroneos,et al.  Diffusion in energy materials: Governing dynamics from atomistic modelling , 2017 .

[138]  P. Bruce,et al.  Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskites , 2017 .

[139]  J. Carrasco,et al.  First-Principles Study of Sodium Intercalation in Crystalline Nax Si24 (0 ≤ x ≤ 4) as Anode Material for Na-ion Batteries , 2017, Scientific Reports.

[140]  L. Dai,et al.  2D Frameworks of C2N and C3N as New Anode Materials for Lithium‐Ion Batteries , 2017, Advanced materials.

[141]  Jianjun Jiang,et al.  Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries , 2017 .

[142]  Yutao Li,et al.  Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries , 2017, Advanced science.

[143]  Yi Yao,et al.  Plane-wave pseudopotential implementation and performance of SCAN meta-GGA exchange-correlation functional for extended systems. , 2017, The Journal of chemical physics.

[144]  Jiangwei Wang,et al.  Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries , 2017 .

[145]  Clement Bommier,et al.  Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping , 2017 .

[146]  A. J. Morris,et al.  Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. , 2017, Journal of the American Chemical Society.

[147]  David J. Singh,et al.  Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries. , 2017, ACS applied materials & interfaces.

[148]  Chol-Jun Yu,et al.  Ab initio study of sodium cointercalation with diglyme molecule into graphite , 2017, 1705.01673.

[149]  B. Dunn,et al.  Porous One‐Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage , 2017, Advanced materials.

[150]  P. Kent,et al.  Computational Insights into Materials and Interfaces for Capacitive Energy Storage , 2017, Advanced science.

[151]  Chenglong Zhao,et al.  Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage , 2017 .

[152]  Sinan Li,et al.  Adsorption, intercalation and diffusion of Na on defective bilayer graphene: a computational study , 2017 .

[153]  S. Jung,et al.  Origin of excellent rate and cycle performance of Na+-solvent cointercalated graphite vs. poor performance of Li+-solvent case , 2017 .

[154]  L. Luo,et al.  Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode , 2017 .

[155]  D. Searles,et al.  Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries , 2017 .

[156]  Shengbai Zhang,et al.  The Role of Ionic Liquid Electrolyte in an Aluminum–Graphite Electrochemical Cell , 2017 .

[157]  Xiaodi Ren,et al.  MoS2 as a long-life host material for potassium ion intercalation , 2017, Nano Research.

[158]  Rahul Malik,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[159]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[160]  Yan Yu,et al.  Sodium‐Ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dual‐Doping , 2017, Advanced science.

[161]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[162]  M. Bocquet,et al.  Chemisorption of Hydroxide on 2D Materials from DFT Calculations: Graphene versus Hexagonal Boron Nitride. , 2016, The journal of physical chemistry letters.

[163]  Xiaohui Yan,et al.  Two-dimensional SiS as a potential anode material for lithium-based batteries: A first-principles study , 2016 .

[164]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[165]  Y. Lai,et al.  Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials , 2016 .

[166]  Y. Fu,et al.  Mg ion dynamics in anode materials of Sn and Bi for Mg-ion batteries , 2016 .

[167]  T. Rabczuk,et al.  Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation , 2016, 1703.06788.

[168]  C. Wolverton,et al.  Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism. , 2016, ACS nano.

[169]  V. Shenoy,et al.  Defective Graphene and Graphene Allotropes as High-Capacity Anode Materials for Mg Ion Batteries , 2016 .

[170]  Gerbrand Ceder,et al.  An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. , 2016, The Journal of chemical physics.

[171]  S. Karmakar,et al.  Two-Dimensional Group IV Monochalcogenides: Anode Materials for Li-Ion Batteries , 2016 .

[172]  T. Bredow,et al.  Reconstruction of low-index graphite surfaces , 2016 .

[173]  Zhong Jin,et al.  Emerging non-lithium ion batteries , 2016 .

[174]  Sinan Li,et al.  Sodium adsorption and intercalation in bilayer graphene from density functional theory calculations , 2016, Theoretical Chemistry Accounts.

[175]  S. Karmakar,et al.  Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries , 2016 .

[176]  Yan Yao,et al.  Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing , 2016 .

[177]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[178]  Chris J. Pickard,et al.  Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries , 2016 .

[179]  W. Goddard,et al.  Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals , 2016, Proceedings of the National Academy of Sciences.

[180]  L. Chen,et al.  Geometry and fast diffusion of AlCl4 cluster intercalated in graphite , 2016 .

[181]  Gerbrand Ceder,et al.  Computational understanding of Li-ion batteries , 2016 .

[182]  P. Kaghazchi,et al.  Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene , 2016 .

[183]  P. Liu,et al.  A review of carbon materials and their composites with alloy metals for sodium ion battery anodes , 2016 .

[184]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[185]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[186]  R. Hennig,et al.  Computational characterization of lightweight multilayer MXene Li-ion battery anodes , 2016 .

[187]  Anubhav Jain,et al.  Computational predictions of energy materials using density functional theory , 2016 .

[188]  Chol-Jun Yu,et al.  First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications , 2015, 1512.07695.

[189]  Hao Liu,et al.  First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. , 2015, The journal of physical chemistry letters.

[190]  K. Nakanishi,et al.  Hard Carbon Anodes for Na-Ion Batteries: Toward a Practical Use , 2015 .

[191]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[192]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[193]  E. Uchaker,et al.  Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries , 2015, Science China Materials.

[194]  Haidong Wang,et al.  First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene , 2015, Materials.

[195]  H. Alshareef,et al.  Mechanistic Insight into the Stability of HfO2 -Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries. , 2015, Small.

[196]  P. Johansson Computational modelling of polymer electrolytes: What do 30 years of research efforts provide us today? , 2015 .

[197]  M. Carignano,et al.  Exfoliation of Electrolyte-Intercalated Graphene: Molecular Dynamics Simulation Study , 2015 .

[198]  N. Birbilis,et al.  High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights , 2015 .

[199]  G. Hwang,et al.  A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries , 2015 .

[200]  Seungchul Kim,et al.  Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations , 2015 .

[201]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[202]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[203]  Ante Bilić,et al.  Prediction of novel alloy phases of Al with Sc or Ta , 2015, Scientific Reports.

[204]  Ya‐Xia Yin,et al.  Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. , 2015, Angewandte Chemie.

[205]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[206]  M. Doublet,et al.  Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries , 2015 .

[207]  Sergei Manzhos,et al.  A computational study of Na behavior on graphene , 2015 .

[208]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[209]  Qing Tang,et al.  Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene , 2015, Nanotechnology.

[210]  Gang Zhang,et al.  Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. , 2015, Nano letters.

[211]  S. Manzhos,et al.  Amorphous (Glassy) Carbon, a Promising Material for Sodium Ion Battery Anodes: a Combined First-Principles and Experimental Study , 2015, 1502.00833.

[212]  Nikhil V. Medhekar,et al.  Ab initio characterization of layered MoS2 as anode for sodium-ion batteries , 2014 .

[213]  Yury Gogotsi,et al.  Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. , 2014, ACS nano.

[214]  P. Balbuena,et al.  Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries , 2014 .

[215]  M. Wagemaker,et al.  Na(2+x)Ti6O13 as potential negative electrode material for Na-ion batteries. , 2014, Inorganic chemistry.

[216]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[217]  S. T. Picraux,et al.  Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation. , 2014, Nano letters.

[218]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[219]  D. Spearot,et al.  Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations , 2014 .

[220]  B. Scrosati,et al.  An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. , 2014, Nano letters.

[221]  A. Ambrosetti,et al.  Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene. , 2014, The Journal of chemical physics.

[222]  S. Manzhos,et al.  Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon , 2014, 1401.7795.

[223]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[224]  P. Heitjans,et al.  Theoretical Study of Li Migration in Lithium–Graphite Intercalation Compounds with Dispersion-Corrected DFT Methods , 2014 .

[225]  Perla B. Balbuena,et al.  Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries , 2014, 1401.4165.

[226]  Vivek B Shenoy,et al.  Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. , 2014, ACS applied materials & interfaces.

[227]  K. Tasaki Density Functional Theory Study on Structural and Energetic Characteristics of Graphite Intercalation Compounds , 2014 .

[228]  J. Monk,et al.  Ionic Liquids Confined in a Realistic Activated Carbon Model: A Molecular Simulation Study , 2014 .

[229]  Yasuharu Okamoto,et al.  Density Functional Theory Calculations of Alkali Metal (Li, Na, and K) Graphite Intercalation Compounds , 2014 .

[230]  S. Manzhos,et al.  Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations , 2013 .

[231]  J. Tarascon,et al.  Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na) , 2013 .

[232]  Clas Persson,et al.  Interlayer interactions in graphites , 2013, Scientific Reports.

[233]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[234]  Alejandro A. Franco,et al.  Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges , 2013 .

[235]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[236]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[237]  Meng Gu,et al.  Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4. , 2013, ACS nano.

[238]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[239]  T. Fukutsuka,et al.  Electrochemical preparation of a lithium–graphite-intercalation compound in a dimethyl sulfoxide-based electrolyte containing calcium ions , 2013 .

[240]  Jijun Zhao,et al.  The R3-carbon allotrope: a pathway towards glassy carbon under high pressure , 2013, Scientific Reports.

[241]  Y. Meng,et al.  Recent advances in first principles computational research of cathode materials for lithium-ion batteries. , 2013, Accounts of chemical research.

[242]  V. Shenoy,et al.  Elastic softening of alloy negative electrodes for Na-ion batteries , 2013 .

[243]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[244]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[245]  K. Persson,et al.  Li absorption and intercalation in single layer graphene and few layer graphene by first principles. , 2012, Nano letters.

[246]  T. Hussain,et al.  Functionalization of graphane with alkali and alkaline-earth metals: An insulator-to-metallic transition , 2012 .

[247]  Maenghyo Cho,et al.  Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries , 2012 .

[248]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[249]  Seung Jin Chae,et al.  Diffusion mechanism of lithium ion through basal plane of layered graphene. , 2012, Journal of the American Chemical Society.

[250]  J. Kuo,et al.  Adsorption and diffusion of Li on pristine and defective graphene. , 2012, ACS applied materials & interfaces.

[251]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[252]  Chang-rui Zhang,et al.  Effects of heat treatment on properties of boron nitride fiber , 2012 .

[253]  Wenzhong Wang,et al.  Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. , 2012, ACS applied materials & interfaces.

[254]  Karl O. Albrecht,et al.  First-Principles Characterization of Potassium Intercalation in Hexagonal 2H-MoS2 , 2012 .

[255]  Z. Ren,et al.  Diffusion of Li+ ion on graphene: A DFT study , 2011 .

[256]  H. Emmerich,et al.  Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications , 2011 .

[257]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[258]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[259]  B. Bennecer,et al.  Elastic and electronic properties of the alkali pnictide compounds Li3Sb, Li3Bi, Li2NaSb and Li2NaBi , 2011 .

[260]  A. Pasquarello,et al.  Advanced calculations for defects in materials : electronic structure methods , 2011 .

[261]  Zhen Zhou,et al.  Recent progress of computational investigation on anode materials in Li ion batteries , 2011 .

[262]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[263]  Karl O. Albrecht,et al.  Adsorption of Potassium on MoS2(100) Surface: A First-Principles Investigation , 2011 .

[264]  P R C Kent,et al.  Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. , 2011, The journal of physical chemistry. B.

[265]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[266]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[267]  M. Peressi,et al.  First-Principle Study of Hydroxyl Functional Groups on Pristine, Defected Graphene, and Graphene Epoxide , 2010 .

[268]  M. Pumera Graphene-based nanomaterials and their electrochemistry. , 2010, Chemical Society reviews.

[269]  C. Cazorla Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene , 2010 .

[270]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[271]  M Miskufova,et al.  Advances in computational studies of energy materials , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[272]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[273]  Kevin Leung,et al.  Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. , 2010, Physical chemistry chemical physics : PCCP.

[274]  Haihui Wang,et al.  Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries , 2010 .

[275]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[276]  Yunfeng Shi,et al.  Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics , 2010 .

[277]  Anton Van der Ven,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[278]  Deyu Li,et al.  Study on the Theoretical Capacity of Spinel Lithium Titanate Induced by Low-Potential Intercalation , 2009 .

[279]  Emily A. Carter,et al.  Challenges in Modeling Materials Properties Without Experimental Input , 2008, Science.

[280]  Q. Cai,et al.  A pore network model for diffusion in nanoporous carbons: Validation by molecular dynamics simulation , 2008 .

[281]  A. Cai,et al.  New model of Gibbs free energy difference for bulk metallic glasses , 2006 .

[282]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[283]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. , 2006, The Journal of chemical physics.

[284]  A. Becke,et al.  A density-functional model of the dispersion interaction. , 2005, The Journal of chemical physics.

[285]  K. Tasaki,et al.  Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[286]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[287]  Wangyu Hu,et al.  The application of the analytic embedded atom potentials to alkali metals , 2002 .

[288]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[289]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[290]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[291]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[292]  A. Bubenzer,et al.  Hard carbon coatings with low optical absorption , 1983 .

[293]  R. Huggins,et al.  Electrochemical investigation of the chemical diffusion, partial ionic conductivities, and other kinetic parameters in Li3Sb and Li3Bi , 1977 .

[294]  Yong Yang,et al.  Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries , 2020 .

[295]  Xuebin Yu,et al.  Recent progress in phosphorus based anode materials for lithium/sodium ion batteries , 2019, Energy Storage Materials.

[296]  L. Mai,et al.  Energy storage through intercalation reactions: electrodes for rechargeable batteries , 2017 .

[297]  K. Kang,et al.  Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host , 2017 .

[298]  Peng Lu,et al.  Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth , 2016 .

[299]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[300]  A. Harutyunyan,et al.  Origin of Excess Irreversible Capacity in Lithium-Ion Batteries Based on Carbon Nanostructures , 2015 .

[301]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[302]  Chunsheng Wang,et al.  An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. , 2015, Small.

[303]  K. Kim,et al.  Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials from First Principles Calculations , 2014 .

[304]  A. Chatterjee,et al.  Nudged-Elastic Band Study of Lithium Diffusion in Bulk Silicon in the Presence of Strain , 2014 .

[305]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[306]  A. Ishii,et al.  Migration of adatom adsorption on graphene using DFT calculation , 2011 .

[307]  P. Balbuena,et al.  Theoretical studies on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates , 2005 .

[308]  D. Frenkel,et al.  Understanding molecular simulation : from algorithms to applications. 2nd ed. , 2002 .

[309]  M. Tuckerman,et al.  Understanding Modern Molecular Dynamics: Techniques and Applications , 2000 .