Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: A new membrane material for CO2 separation

The design and synthesis of polymers with well-defined properties (tailor-made) are reported in this paper. The work focuses on the design of experiments, synthesis and characterization of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEO) copolymers as CO2-philic membrane materials. The statistical analysis of experimental data, data fitting to mathematical models, as well as the optimization of CO2 permeability is discussed. By these means we synthesized optimal materials with promising CO2 separation performance (CO2 permeability = 183–200 Barrer and CO2/N2 selectivity >50); they are also promising because the synthesis is simple, highly reproducible and might be scalable for producing on large volumes. Thus, these new and tailored polymers might have potential applications as membrane material for CO2-capture. © 2010 Elsevier B.V. All rights reserved.

[1]  A. Szymczyk Structure and properties of new polyester elastomers composed of poly(trimethylene terephthalate) and poly(ethylene oxide) , 2009 .

[2]  R. Spontak,et al.  Mesoblends of Polyether Block Copolymers with Poly(ethylene glycol) , 2004 .

[3]  D. V. Krevelen Properties of Polymers , 1990 .

[4]  Donald R Paul,et al.  Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers , 2001 .

[5]  Zhi Ma,et al.  Synthesis of hydrophilic/CO2‐philic poly(ethylene oxide)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) block copolymers via controlled/living radical polymerizations and their properties in liquid and supercritical CO2 , 2004 .

[6]  Benny D. Freeman,et al.  Gas solubility, diffusivity and permeability in poly(ethylene oxide) , 2004 .

[7]  Matthias Wessling,et al.  Mixed gas water vapor/N transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers , 2005 .

[8]  S. Ahn,et al.  Synthesis and gas permeation properties of amphiphilic graft copolymer membranes , 2009 .

[9]  D. R. Paul Gas transport in homogeneous multicomponent polymers , 1984 .

[10]  Klaus-Viktor Peinemann,et al.  CO2-Philic Polymer Membrane with Extremely High Separation Performance , 2010 .

[11]  Joseph V. Kurian,et al.  A New Polymer Platform for the Future — Sorona® from Corn Derived 1,3-Propanediol , 2005 .

[12]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[13]  Our Materials Science Correspondent Block Copolymers , 1973, Nature.

[14]  Dan Charles Stimulus Gives DOE Billions for Carbon-Capture Projects , 2009, Science.

[15]  I. Ward,et al.  The mechanical properties and structure of poly(m‐methylene terephthalate) fibers , 1976 .

[16]  H. Chuah Orientation and Structure Development in Poly(trimethylene terephthalate) Tensile Drawing , 2001 .

[17]  Jixin Qian,et al.  Toward Polymer Product Design. I. Dynamic Optimization of Average Molecular Weights and Polydispersity Index in Batch Free Radical Polymerization , 2009 .

[18]  Eric J. Beckman,et al.  Non-fluorous polymers with very high solubility in supercritical CO 2 down to low pressures , 2000, Nature.

[19]  R. J. Gaymans,et al.  Tuning of mass transport properties of multi-block copolymers for CO2 capture applications , 2010 .

[20]  W. Bennett,et al.  Effect of branching on rod-coil block polyimides as membrane materials for lithium polymer batteries , 2003 .

[21]  Yoichi Yamaguchi,et al.  Theoretical design of donor-acceptor polymers with low bandgaps , 1998 .

[22]  D. Macfarlane,et al.  Free volume and conductivity of plasticized polyether-urethane solid polymer electrolytes , 1995 .

[23]  K. M. Chittajallu,et al.  Design and optimization of polymer electrolyte membrane (PEM) fuel cells , 2004 .

[24]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[25]  Matthias Wessling,et al.  Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers , 2004 .

[26]  F. Faupel,et al.  Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes , 2009 .

[27]  C. Barner‐Kowollik Modeling for Polymer Design , 2009 .

[28]  Xi Chen,et al.  A neural network approach to prediction of glass transition temperature of polymers , 2008, Int. J. Intell. Syst..

[29]  Klaus-Viktor Peinemann,et al.  Nanostructured membrane material designed for carbon dioxide separation , 2010 .

[30]  Wilfredo Yave,et al.  PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation , 2008 .

[31]  S. Fakirov,et al.  Structure of segmented poly (ether ester)s as revealed by synchrotron radiation , 1990 .

[32]  Klaus-Viktor Peinemann,et al.  Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases , 2008 .