A hierarchical model for ordinal matrix factorization

[1]  Max Welling,et al.  Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures , 2010, AAAI.

[2]  Michael I. Jordan,et al.  Mixed Membership Matrix Factorization , 2010, ICML.

[3]  Domonkos Tikk,et al.  Scalable Collaborative Filtering Approaches for Large Recommender Systems , 2009, J. Mach. Learn. Res..

[4]  Yihong Gong,et al.  Fast nonparametric matrix factorization for large-scale collaborative filtering , 2009, SIGIR.

[5]  Jieping Ye,et al.  Mining discrete patterns via binary matrix factorization , 2009, KDD.

[6]  Yihong Gong,et al.  Large-scale collaborative prediction using a nonparametric random effects model , 2009, ICML '09.

[7]  Neil D. Lawrence,et al.  Non-linear matrix factorization with Gaussian processes , 2009, ICML '09.

[8]  Yihong Gong,et al.  Stochastic Relational Models for Large-scale Dyadic Data using MCMC , 2008, NIPS.

[9]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[10]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[11]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[12]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[13]  Pauli Miettinen,et al.  The Discrete Basis Problem , 2006, IEEE Transactions on Knowledge and Data Engineering.

[14]  Wei Chu,et al.  Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..

[15]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[16]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[17]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[18]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[19]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[20]  E. Ziegel Generalized Linear Models , 2002, Technometrics.

[21]  R. Kohli,et al.  Internet Recommendation Systems , 2000 .

[22]  Dan Oneata,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[23]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[24]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[25]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[26]  L. N. Kanal,et al.  Uncertainty in Artificial Intelligence 5 , 1990 .

[27]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  S S Stevens,et al.  On the Theory of Scales of Measurement. , 1946, Science.

[29]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[30]  C. Ding,et al.  Binary matrix factorization for analyzing gene expression data , 2009, Data Mining and Knowledge Discovery.

[31]  Yehuda Koren,et al.  Improved Neighborhood-based Collaborative Filtering , 2007 .

[32]  Yehuda Koren,et al.  The BellKor solution to the Netflix Prize , 2007 .

[33]  Yew Jin Lim Variational Bayesian Approach to Movie Rating Prediction , 2007 .

[34]  J. York,et al.  Amazon.com Recommendations: Item-to-Item Collaborative Filtering , 2003, IEEE Internet Comput..

[35]  Radford M. Neal Bayesian learning for neural networks , 1995 .

[36]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[37]  Thore Graepel,et al.  WWW 2009 MADRID! Track: Data Mining / Session: Statistical Methods Matchbox: Large Scale Online Bayesian Recommendations , 2022 .