A nonsmooth Newton method for the design of state feedback stabilizers under structure constraints

Abstract The paper proposes a method for structured state-feedback controllers design for linear time-invariant systems. A necessary and sufficient condition for structured state-feedback stabilizability of linear systems, making an appeal to the linear-quadratic (LQ) regulator theory, is first proposed. The latter is presented in the form of a nonlinear matrix equation. Then, it is recast as a nonsmooth unconstrained equation using projection onto the positive semi-definite matrices cone. Thereby, a nonsmooth Newton’s iterative algorithm, based on the Clarke generalized Jacobian of said projection, is proposed. This method has a guaranteed local convergence. Finally, numerical examples illustrate the effectiveness of the proposed method.

[1]  Defeng Sun,et al.  The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications , 2006, Math. Oper. Res..

[2]  Dragoslav D. Siljak,et al.  Control design with arbitrary information structure constraints , 2008, Autom..

[3]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[4]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[5]  Altuğ İftar,et al.  Overlapping decentralized dynamic optimal control , 1993 .

[6]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[7]  Heinz H. Bauschke,et al.  On the Douglas–Rachford algorithm , 2016, Mathematical Programming.

[8]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[9]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[10]  Hamid Reza Karimi,et al.  Static output-feedback control under information structure constraints , 2013, Autom..

[11]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[12]  Alexander Shapiro,et al.  Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..

[13]  Jérôme Malick,et al.  Clarke Generalized Jacobian of the Projection onto the Cone of Positive Semidefinite Matrices , 2006 .

[14]  Mohamed Yagoubi,et al.  Projection/Reflection-based Techniques for Multi-objective Control Synthesis under information structure constraints , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[15]  Francesco Ferrante,et al.  On the Design of Structured Stabilizers for LTI Systems , 2020, IEEE Control Systems Letters.

[16]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[17]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[18]  A. Jameson,et al.  Optimality of linear control systems , 1972 .

[19]  Michael L. Overton,et al.  Multiobjective robust control with HIFOO 2.0 , 2009, 0905.3229.

[20]  Philippe de Larminat Analysis and Control of Linear Systems , 2007 .

[21]  Dimitri Peaucelle,et al.  S-Variable Approach to LMI-Based Robust Control , 2014 .

[22]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[23]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[24]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[25]  D. Siljak,et al.  Control of Complex Systems: Structural Constraints and Uncertainty , 2010 .

[26]  Sigurd Skogestad,et al.  Sequential design of decentralized controllers , 1994, Autom..

[27]  Frank L. Lewis,et al.  Parameterization of all stabilizing Hinfinity static state-feedback gains: Application to output-feedback design , 2007, Autom..

[28]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[29]  S. Lall,et al.  On computation of optimal controllers subject to quadratically invariant sparsity constraints , 2004, Proceedings of the 2004 American Control Conference.

[30]  Pedro Luis Dias Peres,et al.  Decentralized control through parameter space optimization , 1994, Autom..

[31]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[32]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[33]  Dragoslav D. Šiljak,et al.  Decentralized control and computations: status and prospects , 1996 .

[34]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[35]  Paul Pinsler Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .

[36]  Alexander Shapiro,et al.  Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints , 1998, Math. Oper. Res..