A parts-based approach for automatic 3D shape categorization using belief functions

Grouping 3D objects into (semantically) meaningful categories is a challenging and important problem in 3D mining and shape processing. Here, we present a novel approach to categorize 3D objects. The method described in this article, is a belief-function-based approach and consists of two stages: the training stage, where 3D objects in the same category are processed and a set of representative parts is constructed, and the labeling stage, where unknown objects are categorized. The experimental results obtained on the Tosca-Sumner and the Shrec07 datasets show that the system efficiently performs in categorizing 3D models.

[1]  Alberto Del Bimbo,et al.  Content-Based Retrieval of 3-D Objects Using Spin Image Signatures , 2007, IEEE Transactions on Multimedia.

[2]  Marc Rioux,et al.  Nefertiti: a query by content system for three-dimensional model and image databases management , 1999, Image Vis. Comput..

[3]  Bernard D. Adelstein,et al.  Demand Characteristics in Assessing Motion Sickness in a Virtual Environment: Or Does Taking a Motion Sickness Questionnaire Make You Sick? , 2007 .

[4]  Alexander M. Bronstein,et al.  Partial Similarity of Shapes Using a Statistical Significance Measure , 2009, IPSJ Trans. Comput. Vis. Appl..

[5]  B. D. Adelstein,et al.  Calculus of Nonrigid Surfaces for Geometry and Texture Manipulation , 2007 .

[6]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[7]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[8]  Martial Hebert,et al.  Automatic Class Selection and Prototyping for 3-D Object Classification , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[9]  Michael G. Strintzis,et al.  Combining Topological and Geometrical Features for Global and Partial 3-D Shape Retrieval , 2008, IEEE Transactions on Multimedia.

[10]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[11]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[12]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[13]  Daniela Giorgi,et al.  A Comparison Framework for 3D Object Classification Methods , 2006, MRCS.

[14]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[15]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[16]  Alfred M. Bruckstein,et al.  Partial Similarity of Objects, or How to Compare a Centaur to a Horse , 2009, International Journal of Computer Vision.

[17]  Hai Yang,et al.  ACM Transactions on Intelligent Systems and Technology - Special Section on Urban Computing , 2014 .

[18]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[19]  Silvia Biasotti,et al.  3D object comparison based on shape descriptors , 2005, Int. J. Comput. Appl. Technol..

[20]  Mohamed Daoudi,et al.  Topology driven 3D mesh hierarchical segmentation , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[21]  Martial Hebert,et al.  Parts-based 3D object classification , 2004, CVPR 2004.

[22]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[23]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[24]  Mohamed Daoudi,et al.  A Bayesian 3-D Search Engine Using Adaptive Views Clustering , 2007, IEEE Transactions on Multimedia.

[25]  Thierry Denoeux,et al.  An evidence-theoretic k-NN rule with parameter optimization , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[26]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[27]  Alberto Del Bimbo,et al.  Retrieval of 3D objects using curvature correlograms , 2005, 2005 IEEE International Conference on Multimedia and Expo.