The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats.

BACKGROUND Recombinant human bone morphogenetic proteins (rhBMPs) can induce bone formation, but the inability to identify an ideal delivery system limits their clinical application. We used ex vivo adenoviral gene transfer to create BMP-2-producing bone-marrow cells, which allow delivery of the BMP-2 to a specific anatomical site. The autologous BMP-2-producing bone-marrow cells then were used to heal a critical-sized femoral segmental defect in syngeneic rats. METHODS Femoral defects in five groups of rats were filled with 5 x 10(6) BMP-2-producing bone-marrow cells, created through adenoviral gene transfer (twenty-four femora, Group I); twenty micrograms of rhBMP-2 (sixteen femora, Group II); 5 x 10(6) beta-galactosidase-producing rat-bone-marrow cells, created through adenoviral gene transfer of the lacZ gene (twelve femora, Group III); 5 x 10(6) uninfected rat-bone-marrow cells (ten femora, Group IV); or guanidine hydrochloride-extracted demineralized bone matrix only (ten femora, Group V). Guanidine hydrochloride-extracted demineralized bone matrix served as a substrate in all experimental groups. Specimens that were removed two months postoperatively underwent histological and histomorphometric analysis as well as biomechanical testing. RESULTS Twenty-two of the twenty-four defects in Group I (BMP-2-producing bone-marrow cells) and all sixteen defects in Group II (rhBMP-2) had healed radiographically at two months postoperatively compared with only one of the thirty-two defects in the three control groups (beta-galactosidase-producing rat-bone-marrow cells, uninfected rat-bone-marrow cells, and guanidine hydrochloride-extracted demineralized bone matrix alone). Histological analysis of the specimens revealed that defects that had received BMP-2-producing bone-marrow cells (Group I) were filled with coarse trabecular bone at two months postoperatively, whereas in those that had received rhBMP-2 (Group II) the bone was thin and lace-like. Defects that had been treated with bone-marrow cells producing beta-galactosidase (Group III), uninfected bone-marrow cells (Group IV), or guanidine hydrochloride-extracted demineralized bone matrix only (Group V) demonstrated little or no bone formation. Histomorphometric analysis revealed a significantly greater total area of bone formation in the defects treated with the BMP-2-producing bone-marrow cells than in those treated with the rhBMP-2 (p = 0.036). Biomechanical testing demonstrated no significant differences, with the numbers available, between the healed femora that had received BMP-2-producing bone-marrow cells and the untreated (control) femora with respect to ultimate torque to failure or energy to failure. CONCLUSIONS This study demonstrated that BMP-2-producing bone-marrow cells created by means of adenoviral gene transfer produce sufficient protein to heal a segmental femoral defect. We also established the feasibility of ex vivo gene transfer with the use of biologically acute autologous short-term cultures of bone-marrow cells.

[1]  V. Rosen,et al.  Novel regulators of bone formation: molecular clones and activities. , 1988 .

[2]  R. Naviaux,et al.  Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Granner,et al.  Why there is an IRS. , 1995, Journal of Clinical Investigation.

[4]  V. Rosen,et al.  The BMP proteins in bone formation and repair. , 1992, Trends in genetics : TIG.

[5]  V. Rosen,et al.  Recombinant human bone morphogenetic protein induces bone formation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Cook,et al.  Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. , 1994, Clinical orthopaedics and related research.

[7]  C. Newgard,et al.  Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism. , 1992, The Journal of biological chemistry.

[8]  S D Cook,et al.  Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. , 1995, The Journal of bone and joint surgery. American volume.

[9]  K. Lyons,et al.  Bone morphogenetic protein-2: biology and applications. , 1996, Clinical orthopaedics and related research.

[10]  F. Graham,et al.  An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Leiden,et al.  Systemic delivery of recombinant proteins by genetically modified myoblasts. , 1991, Science.

[12]  J. Wilson,et al.  Gene therapy for cystic fibrosis: challenges and future directions. , 1995, The Journal of clinical investigation.

[13]  M. Urist Bone: Formation by Autoinduction , 1965, Science.

[14]  S. Cook,et al.  The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. , 1994, The Journal of bone and joint surgery. American volume.

[15]  Ronald G. Crystal,et al.  Transfer of Genes to Humans: Early Lessons and Obstacles to Success , 1995, Science.

[16]  D. Davy,et al.  Induction of bone by a demineralized bone matrix gel: A study in a rat femoral defect model , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[17]  M. Perricaudet,et al.  In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium , 1992, Cell.

[18]  E. Wang,et al.  Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. , 1993, Clinical orthopaedics and related research.

[19]  C. Caskey,et al.  Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Jones,et al.  Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells , 1979, Cell.

[21]  J. Werntz,et al.  Qualitative and quantitative analysis of orthotopic bone regeneration by marrow , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[22]  R. Crystal,et al.  Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors. , 1994, The Journal of investigative dermatology.

[23]  S. Goldstein,et al.  Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  V. Goldberg,et al.  The Effect of Implants Loaded with Autologous Mesenchymal Stem Cells on the Healing of Canine Segmental Bone Defects* , 1998, The Journal of bone and joint surgery. American volume.

[25]  D. Prockop Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues , 1997, Science.

[26]  J. Wilson,et al.  Adenoviruses as gene-delivery vehicles. , 1996, The New England journal of medicine.

[27]  V. Rosen,et al.  The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. , 1992, The Journal of bone and joint surgery. American volume.

[28]  G. Finerman,et al.  Regional gene therapy with a BMP‐2‐producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[29]  C. Caskey,et al.  Transduction of human bone marrow by adenoviral vector. , 1994, Human gene therapy.