Control of leader-follower formation and path planning of mobile robots using Asexual Reproduction Optimization (ARO)

This paper presents the optimal path of nonholonomic multi robots with coherent formation in a leader-follower structure in the presence of obstacles using Asexual Reproduction Optimization (ARO). The robots path planning based on potential field method are accomplished and a novel formation controller for mobile robots based on potential field method is proposed. The efficiency of the proposed method is verified through simulation and experimental studies by applying them to control the formation of four e-Pucks robots (low-cost mobile robot platform). Also the proposed method is compared with Simulated Annealing, Improved Harmony Search and Cuckoo Optimization Algorithm methods and the experimental results, higher performance and fast convergence time to the best solution of the ARO demonstrated that this optimization method is appropriate for real time control application.

[1]  Taha Mansouri,et al.  ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction , 2011, Expert Syst. Appl..

[2]  Ting Chen,et al.  An Obstacle Avoidance Method of Soccer Robot Based on Evolutionary Artificial Potential Field , 2012 .

[3]  K. D. Do,et al.  Nonlinear formation control of unicycle-type mobile robots , 2007, Robotics Auton. Syst..

[4]  Ramin Rajabioun,et al.  Cuckoo Optimization Algorithm , 2011, Appl. Soft Comput..

[5]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1997, Auton. Robots.

[6]  Chen Lei,et al.  Design of Multi-Robot Path Planning System Based on Hierarchical Fuzzy Control , 2011 .

[7]  Lei Tang,et al.  A novel potential field method for obstacle avoidance and path planning of mobile robot , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[8]  Randal W. Beard,et al.  A decentralized scheme for spacecraft formation flying via the virtual structure approach , 2003, Proceedings of the 2003 American Control Conference, 2003..

[9]  Hichem Maaref,et al.  Fuzzy Separation Bearing Control for Mobile Robots Formation , 2007 .

[10]  John A. Stankovic,et al.  Applicability of simulated annealing methods to real-time scheduling and jitter control , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[11]  Min Wang,et al.  Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators , 2000, Robotics Auton. Syst..

[12]  Giovanni Iacca,et al.  Memory-saving memetic computing for path-following mobile robots , 2013, Appl. Soft Comput..

[13]  Mo Jamshidi,et al.  Soft computing for autonomous robotic systems , 2000 .

[14]  C. I. Connolly,et al.  Applications of harmonic functions to robotics , 1992, Proceedings of the 1992 IEEE International Symposium on Intelligent Control.

[15]  Taha Mansouri,et al.  ARO: A new model-free optimization algorithm inspired from asexual reproduction , 2010, Appl. Soft Comput..

[16]  Frank E. Schneider,et al.  A potential field based approach to multi robot formation navigation , 2003, IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003.

[17]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[18]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[19]  Mohammad Bagher Menhaj,et al.  Minimum-delay link determination in networked control systems using Asexual Reproduction Optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Control and Automation.

[20]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[21]  Thierry Siméon,et al.  Motion planning algorithms for molecular simulations: A survey , 2012, Comput. Sci. Rev..

[22]  Guoyu Zuo,et al.  Multi-robot Formation Control Using Reinforcement Learning Method , 2010, ICSI.

[23]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[24]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[25]  Pradeep K. Khosla,et al.  Manipulator control with superquadric artificial potential functions: theory and experiments , 1990, IEEE Trans. Syst. Man Cybern..

[26]  Antariksha Bhaduri,et al.  A mobile robot path planning using Genetic Artificial Immune Network algorithm , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[27]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[28]  Yiguang Hong,et al.  Distributed Observers Design for Leader-Following Control of Multi-Agent Networks (Extended Version) , 2017, 1801.00258.

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[30]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[31]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[32]  Maja J. Mataric,et al.  Issues and approaches in the design of collective autonomous agents , 1995, Robotics Auton. Syst..

[33]  Ahmad A. Masoud,et al.  Evasion of multiple, intelligent pursuers in a stationary, cluttered environment: a harmonic potential field approach , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[34]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[35]  Petros A. Ioannou,et al.  New Potential Functions for Mobile Robot Path Planning , 2000 .

[36]  Loulin Huang,et al.  Velocity planning for a mobile robot to track a moving target - a potential field approach , 2009, Robotics Auton. Syst..

[37]  Mohammad Bagher Menhaj,et al.  Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization , 2011 .

[38]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[39]  YangQuan Chen,et al.  Formation control: a review and a new consideration , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Max Q.-H. Meng,et al.  An efficient neural network approach to dynamic robot motion planning , 2000, Neural Networks.

[41]  Min Cheol Lee,et al.  Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[42]  Fernando Arámbula Cosío,et al.  Autonomous robot navigation using adaptive potential fields , 2004, Math. Comput. Model..

[43]  Randal W. Beard,et al.  Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach , 2004 .

[44]  Sören Larsson,et al.  Path planning for laser scanning with an industrial robot , 2008, Robotics Auton. Syst..

[45]  Ying Zhang,et al.  Affine Transformation of Multiple Mobile Robot Formation by Generalized Ant Colony Optimization , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[46]  Laura E. Barnes,et al.  A potential field based formation control methodology for robot swarms , 2008 .

[47]  Mohammad Pourmahmood Aghababa,et al.  3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles , 2012 .

[48]  F.Y. Hadaegh,et al.  A survey of spacecraft formation flying guidance and control. Part II: control , 2004, Proceedings of the 2004 American Control Conference.