Molecular dynamics simulations probing the effects of interfacial interactions on the tribological properties of nitrile butadiene rubber/nano-SiO2 under water lubrication

[1]  Q. Fu,et al.  Powdered nitrile rubber @ silicon dioxide capsule as the wear modifier of phenolic resin composites under dry friction , 2020 .

[2]  Jian Huang,et al.  Study on the effect of particle size and dispersion of SiO2 on tribological properties of nitrile rubber , 2020 .

[3]  X. Yang,et al.  Improved tribological and noise suppression performance of graphene/nitrile butadiene rubber composites via the exfoliation effect of ionic liquid on graphene , 2020 .

[4]  Chifei Wu,et al.  Acrylonitrile-butadiene-styrene/nitrile butadiene rubber blends enhanced by anhydrous cobalt chloride , 2018, Journal of Applied Polymer Science.

[5]  Ainong Li,et al.  Mechanical and dynamic properties of resin blend and composite systems: A molecular dynamics study , 2018 .

[6]  Xinping Yan,et al.  Insight into tribological problems of green ship and corresponding research progresses , 2018 .

[7]  Quan Wang,et al.  Enhanced tribological properties of polymer composites by incorporation of nano-SiO2 particles: A molecular dynamics simulation study , 2017 .

[8]  Xin-ping Yan,et al.  Tribological Properties of Water-lubricated Rubber Materials after Modification by MoS2 Nanoparticles , 2016, Scientific Reports.

[9]  A. Asadinezhad,et al.  Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation. , 2016, Journal of molecular graphics & modelling.

[10]  Quan Wang,et al.  A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: Molecular dynamics simulations , 2016 .

[11]  Zhikun Wang,et al.  Effect of Interfacial Bonding on Interphase Properties in SiO2/Epoxy Nanocomposite: A Molecular Dynamics Simulation Study. , 2016, ACS applied materials & interfaces.

[12]  P. Menezes,et al.  Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review , 2015 .

[13]  Wang Hao,et al.  Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material , 2015 .

[14]  N. Spencer,et al.  Polymer Brushes under Shear: Molecular Dynamics Simulations Compared to Experiments. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[15]  J. Xing,et al.  A new rubber/UHMWPE alloy for water-lubricated stern bearings , 2015 .

[16]  M. Cho,et al.  Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites , 2015 .

[17]  A. Chattopadhyay,et al.  Study of glass transition temperature (Tg) of novel stress-sensitive composites using molecular dynamic simulation , 2014 .

[18]  Xinping Yan,et al.  Study on wear behaviour and wear model of nitrile butadiene rubber under water lubricated conditions , 2014 .

[19]  V. Tan,et al.  Analysis of PFPE lubricating film in NEMS application via molecular dynamics simulation , 2013 .

[20]  Andrey V Dobrynin,et al.  Friction between brush layers of charged and neutral bottle-brush macromolecules. molecular dynamics simulations. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[21]  H. Berro,et al.  Molecular dynamics simulation of surface energy and ZDDP effects on friction in nano-scale lubricated contacts , 2010 .

[22]  W. Sawyer,et al.  Effect of the sliding orientation on the tribological properties of polyethylene in molecular dynamics simulations , 2008 .

[23]  Weijian Xu,et al.  Atomistic molecular modelling of crosslinked epoxy resin , 2006 .

[24]  A. Koike Molecular Dynamics Study of Tribological Behavior of Confined Branched and Linear Perfluoropolyethers , 1999 .

[25]  R. Cohen,et al.  First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure (vol 60, pg 791, 1999) , 1999, cond-mat/9904431.

[26]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[27]  H. Yang,et al.  High Frequency Viscoelasticity of Carbon Black Filled Compounds , 1996 .

[28]  K. Grosch The Rolling Resistance, Wear and Traction Properties of Tread Compounds , 1996 .

[29]  H. Yang,et al.  Furnace Carbon Black Characterization: Continuing Saga , 1996 .

[30]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[31]  Roy L. Orndorff,et al.  WATER‐LUBRICATED RUBBER BEARINGS, HISTORY AND NEW DEVELOPMENTS , 1985 .

[32]  Quan Wang,et al.  A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene , 2017 .

[33]  Ari J. Tuononen,et al.  Digital image correlation to analyse stick-slip behaviour of tyre tread block , 2014 .

[34]  Sun Xing,et al.  Research Status and Advances of Tribology of Green Ship , 2012 .

[35]  M. Wang New developments in carbon black dispersion , 2005 .

[36]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .