Association of Thioautotrophic Bacteria with Deep-Sea Sponges

[1]  M. W. Taylor,et al.  Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential , 2007, Microbiology and Molecular Biology Reviews.

[2]  F. Stewart,et al.  Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. , 2005, Trends in microbiology.

[3]  C. Fisher,et al.  A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents , 2005 .

[4]  Christopher D. Reeves,et al.  Metagenomic Analysis Reveals Diverse Polyketide Synthase Gene Clusters in Microorganisms Associated with the Marine Sponge Discodermia dissoluta , 2005, Applied and Environmental Microbiology.

[5]  J. Tramper,et al.  Marine Sponges as Pharmacy , 2005, Marine Biotechnology.

[6]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[7]  A. Maruyama,et al.  Two Bacteria Phylotypes Are Predominant in the Suiyo Seamount Hydrothermal Plume , 2004, Applied and Environmental Microbiology.

[8]  Y. Fujiwara,et al.  Molecular taxonomy of vestimentiferans of the western Pacific, and their phylogenetic relationship to species of the eastern Pacific III. Alaysia-like vestimentiferans and relationships among families , 2003 .

[9]  Y. Fujiwara,et al.  Molecular taxonomy of vestimentiferans of the western Pacific and their phylogenetic relationship to species of the eastern Pacific , 2002 .

[10]  J. Sugiyama,et al.  Phylogenetic position of the marine subdivision of Agrobacterium species based on 16S rRNA sequence analysis. , 1997, The Journal of general and applied microbiology.

[11]  C. Fisher,et al.  Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge , 1996 .

[12]  C. Cavanaugh,et al.  Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Fisher,et al.  A methanotrophic carnivorous sponge , 1995, Nature.

[14]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[15]  J. Childress,et al.  The Co‐occurrence of Methanotrophic and Chemoautotrophic Sulfur‐Oxidizing Bacterial Symbionts in a Deep‐sea Mussel , 1993 .

[16]  A. Uitterlinden,et al.  Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.

[17]  A. Hiraishi,et al.  Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification , 1992, Letters in applied microbiology.

[18]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[19]  W. D. Hartman,et al.  Micromorphology and ultrastructure of Caribbean sclerosponges , 1989 .

[20]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[21]  Susan Schmitt,et al.  Sponges and microbes - new frontiers in an ancient symbiosis , 2008 .

[22]  J. Vacelet,et al.  A new species of carnivorous deep-sea sponge (Demospongiae: Cladorhizidae) associated with methanotrophic bacteria , 2002 .

[23]  M. Maldonado Family Pachastrellidae Carter, 1875 , 2002 .

[24]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[25]  Gapped BLAST and PSI-BLAST: A new , 1997 .