A faster circle-sweep Delaunay triangulation algorithm

This paper presents a new way to compute the Delaunay triangulation of a planar set P of n points, using sweep-circle technique combined with the standard recursive edge-flipping. The algorithm sweeps the plane by an increasing circle whose center is a fixed point in the convex hull of P. Empirical results and comparisons show that it reduces the number of in-circle tests and edge-flips, and it is efficient in practice.

[1]  Jean-Claude Spehner,et al.  An increasing-circle sweep-algorithm to construct the delaunay diagram in the plane , 1997, CCCG.

[2]  Ahmad Biniaz Slope Preserving Terrain Simplification - An Experimental Study , 2009, CCCG.

[3]  Gholamhossein Dastghaibyfard,et al.  Drainage reality in terrains with higher-order Delaunay triangulations , 2008 .

[4]  Joachim Gudmundsson,et al.  Higher order Delaunay triangulations , 2000, Comput. Geom..

[5]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..

[6]  A. Murat Tekalp,et al.  Face and 2-D mesh animation in MPEG-4 , 2000, Signal Process. Image Commun..

[7]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[8]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[9]  Borut Zalik,et al.  Improvements to randomized incremental Delaunay insertion , 2002, Comput. Graph..

[10]  Borut Zalik,et al.  An incremental construction algorithm for Delaunay triangulation using the nearest-point paradigm , 2003, Int. J. Geogr. Inf. Sci..

[11]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[12]  Arne Maus,et al.  Delaunay triangulation and the convex hull ofn points in expected linear time , 1984, BIT.

[13]  The Area of a Random Convex Polygon , 2004 .

[14]  Liu Yu,et al.  computational geometry algorithms and applications solutions , 2014 .

[15]  Joachim Gudmundsson,et al.  Constrained higher order Delaunay triangulations , 2005, Comput. Geom..

[16]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[17]  Jonathan Richard Shewchuk,et al.  Lecture Notes on Delaunay Mesh Generation , 2012 .

[18]  Ahmad Biniaz,et al.  A Comparison of Plane Sweep Delaunay Triangulation Algorithms , 2007 .

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  Vin de Silva,et al.  A weak characterisation of the Delaunay triangulation , 2008 .

[21]  Jonathan Richard Shewchuk,et al.  General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..

[22]  Mathématiques Sweep Line Algorithm , 2010, Encyclopedia of GIS.

[23]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[24]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[25]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[26]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[27]  Delaunay Triangulations Slope Fidelity in Terrains with Higher-Order , 2008 .

[28]  Front,et al.  Three-Dimensional Delaunay Mesh GenerationUsing a Modi ed Advancing , 1997 .

[29]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[30]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[31]  Rex A. Dwyer A faster divide-and-conquer algorithm for constructing delaunay triangulations , 1987, Algorithmica.

[32]  Jean-Christophe Cuillière,et al.  Generation of a finite element MESH from stereolithography (STL) files , 2002, Comput. Aided Des..

[33]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[34]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[35]  Gil Gonçalves,et al.  Preserving cartographic quality in DTM interpolation from contour lines , 2002 .

[36]  Maarten Löffler,et al.  Generating Realistic Terrains with Higher-Order Delaunay Triangulations , 2005, ESA.

[37]  Borut alik An efficient sweep-line Delaunay triangulation algorithm , 2005 .

[38]  C. Barber Computational geometry with imprecise data and arithmetic , 1992 .