Matrix inversion using Cholesky decomposition

In this paper we present a method for matrix inversion based on Cholesky decomposition with reduced number of operations by avoiding computation of intermediate results; further, we use fixed point simulations to compare the numerical accuracy of the method.

[1]  G. W. Stewart,et al.  Afternotes on numerical analysis , 1987 .

[2]  Mathini Sellathurai,et al.  Reduced-complexity MSGR-based matrix inversion , 2008, 2008 IEEE Workshop on Signal Processing Systems.

[3]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[4]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[5]  A. Happonen,et al.  GSM channel estimator using a fixed-point matrix inversion algorithm , 2005, International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005..

[6]  M. Ylinen,et al.  A fixed-point implementation of matrix inversion using Cholesky decomposition , 2003, 2003 46th Midwest Symposium on Circuits and Systems.

[7]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .