Nonparametric Bayesian Methods for Extracting Structure from Data
暂无分享,去创建一个
[1] A. Edwards,et al. Estimation of the Branch Points of a Branching Diffusion Process , 1970 .
[2] J. Hartigan. Direct Clustering of a Data Matrix , 1972 .
[3] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[4] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[5] T. Ferguson. Prior Distributions on Spaces of Probability Measures , 1974 .
[6] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[7] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[8] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .
[9] S. Wasserman,et al. Stochastic a posteriori blockmodels: Construction and assessment , 1987 .
[10] T. Schedl,et al. fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. , 1988, Genetics.
[11] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[12] Radford M. Neal. Bayesian Mixture Modeling by Monte Carlo Simulation , 1991 .
[13] John R. Anderson,et al. The Adaptive Nature of Human Categorization. , 1991 .
[14] W. Gilks,et al. Adaptive Rejection Sampling for Gibbs Sampling , 1992 .
[15] W. Sudderth,et al. Polya Trees and Random Distributions , 1992 .
[16] M. West,et al. Hyperparameter estimation in Dirichlet process mixture models , 1992 .
[17] Geoffrey E. Hinton,et al. Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.
[18] Michael I. Jordan,et al. Supervised learning from incomplete data via an EM approach , 1993, NIPS.
[19] David Aldous,et al. Tree-based models for random distribution of mass , 1993 .
[20] John R. Anderson,et al. The Adaptive Character of Thought , 1990 .
[21] P. T. Szymanski,et al. Adaptive mixtures of local experts are source coding solutions , 1993, IEEE International Conference on Neural Networks.
[22] Geoffrey E. Hinton,et al. An Alternative Model for Mixtures of Experts , 1994, NIPS.
[23] Zoubin Ghahramani,et al. Factorial Learning and the EM Algorithm , 1994, NIPS.
[24] M. Lavine. More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .
[25] M. Escobar. Estimating Normal Means with a Dirichlet Process Prior , 1994 .
[26] S. MacEachern. Estimating normal means with a conjugate style dirichlet process prior , 1994 .
[27] R. Zemel,et al. Learning sparse multiple cause models , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[28] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[29] Eric Saund,et al. A Multiple Cause Mixture Model for Unsupervised Learning , 1995, Neural Computation.
[30] S. MacEachern,et al. A semiparametric Bayesian model for randomised block designs , 1996 .
[31] Jun S. Liu. Nonparametric hierarchical Bayes via sequential imputations , 1996 .
[32] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[33] P. Green,et al. On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .
[34] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[35] Christopher M. Bishop,et al. GTM: The Generative Topographic Mapping , 1998, Neural Computation.
[36] G. Tomlinson. Analysis of densities , 1998 .
[37] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[38] J. Mesirov,et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.
[39] R. Tibshirani,et al. Clustering methods for the analysis of DNA microarray data , 1999 .
[40] Carl E. Rasmussen,et al. The Infinite Gaussian Mixture Model , 1999, NIPS.
[41] Purushottam W. Laud,et al. Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .
[42] Miguel Á. Carreira-Perpiñán. One-to-many mappings, continuity constraints and latent variable models , 1999 .
[43] Christopher K. I. Williams. A MCMC Approach to Hierarchical Mixture Modelling , 1999, NIPS.
[44] M. Escobar,et al. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[45] George M. Church,et al. Biclustering of Expression Data , 2000, ISMB.
[46] S. MacEachern. Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .
[47] L. Lazzeroni. Plaid models for gene expression data , 2000 .
[48] H. Ishwaran,et al. Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .
[49] Miguel Á. Carreira-Perpiñán,et al. Continuous latent variable models for dimensionality reduction and sequential data reconstruction , 2001 .
[50] Yang Song,et al. Learning probabilistic structure for human motion detection , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[51] Alan E. Gelfand,et al. SPATIAL NONPARAMETRIC BAYESIAN MODELS , 2001 .
[52] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[53] Carl E. Rasmussen,et al. Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.
[54] J. Bernardo. The Concept of Exchangeability and its Applications , 2001 .
[55] Carl E. Rasmussen,et al. Factorial Hidden Markov Models , 1997 .
[56] Trevor Hastie,et al. Imputing Missing Data for Gene Expression Arrays , 2001 .
[57] P. Green,et al. Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .
[58] Russ B. Altman,et al. Missing value estimation methods for DNA microarrays , 2001, Bioinform..
[59] Mario Medvedovic,et al. Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..
[60] E. Otranto,et al. A NONPARAMETRIC BAYESIAN APPROACH TO DETECT THE NUMBER OF REGIMES IN MARKOV SWITCHING MODELS , 2002 .
[61] W. Johnson,et al. Modeling Regression Error With a Mixture of Polya Trees , 2002 .
[62] Peter D. Hoff,et al. Identifying Carriers of a Genetic Modifier Using Nonparametric Bayesian Methods , 2002 .
[63] Thomas L. Griffiths,et al. Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.
[64] Peter Müller,et al. ANOVA DDP Models: A Review , 2003 .
[65] Shin Ishii,et al. A Bayesian missing value estimation method for gene expression profile data , 2003, Bioinform..
[66] Radford M. Neal,et al. Density Modeling and Clustering Using Dirichlet Diffusion Trees , 2003 .
[67] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[68] Thomas L. Griffiths,et al. Integrating Topics and Syntax , 2004, NIPS.
[69] T. H. Bø,et al. LSimpute: accurate estimation of missing values in microarray data with least squares methods. , 2004, Nucleic acids research.
[70] S. MacEachern,et al. An ANOVA Model for Dependent Random Measures , 2004 .
[71] F. Dellaert,et al. Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping , 2004 .
[72] Michael I. Jordan,et al. Variational methods for the Dirichlet process , 2004, ICML.
[73] P. Müller,et al. A method for combining inference across related nonparametric Bayesian models , 2004 .
[74] Radford M. Neal,et al. A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model , 2004 .
[75] Paul Fearnhead,et al. Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..
[76] P. Földiák,et al. Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.
[77] John R. Anderson,et al. Explorations of an Incremental, Bayesian Algorithm for Categorization , 1992, Machine Learning.
[78] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[79] P. Müller,et al. A Bayesian mixture model for differential gene expression , 2005 .
[80] Thomas L. Griffiths,et al. Interpolating between types and tokens by estimating power-law generators , 2005, NIPS.
[81] David A. Forsyth,et al. Skeletal parameter estimation from optical motion capture data , 2004, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[82] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[83] Simon Osindero,et al. An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.
[84] S. MacEachern,et al. Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .
[85] S. Roweis,et al. Time-Varying Topic Models using Dependent Dirichlet Processes , 2005 .
[86] J. E. Griffin,et al. Order-Based Dependent Dirichlet Processes , 2006 .
[87] Max Welling,et al. Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation , 2006, UAI.
[88] J. Tenenbaum,et al. Theory-based Bayesian models of inductive learning and reasoning , 2006, Trends in Cognitive Sciences.
[89] Marc Pollefeys,et al. Automatic Kinematic Chain Building from Feature Trajectories of Articulated Objects , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[90] Michael I. Jordan,et al. Nonparametric empirical Bayes for the Dirichlet process mixture model , 2006, Stat. Comput..
[91] Eric P. Xing,et al. Hidden Markov Dirichlet Process: Modeling Genetic Recombination in Open Ancestral Space , 2006, NIPS.
[92] Michael A. West,et al. Hierarchical priors and mixture models, with applications in regression and density estimation , 2006 .
[93] Thomas L. Griffiths,et al. Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.
[94] J. Pella,et al. The Gibbs and splitmerge sampler for population mixture analysis from genetic data with incomplete baselines , 2006 .
[95] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[96] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.
[97] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[98] Wei Li,et al. Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.
[99] Brendan J. Frey,et al. Matrix Tile Analysis , 2006, UAI.
[100] Yee Whye Teh,et al. A Bayesian Interpretation of Interpolated Kneser-Ney , 2006 .
[101] Thomas L. Griffiths,et al. A Non-Parametric Bayesian Method for Inferring Hidden Causes , 2006, UAI.
[102] Wei Li,et al. Mixtures of hierarchical topics with Pachinko allocation , 2007, ICML '07.
[103] Adam N. Sanborn,et al. Unifying rational models of categorization via the hierarchical Dirichlet process , 2019 .
[104] G. Roberts,et al. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.
[105] S. Roweis,et al. Nonparametric Bayesian Biclustering , 2007 .
[106] Christopher Joseph Pal,et al. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering , 2007, BMC Bioinformatics.
[107] Yee Whye Teh,et al. Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.
[108] Thomas Hofmann,et al. A Nonparametric Bayesian Method for Inferring Features From Similarity Judgments , 2007 .
[109] P. Eric,et al. A Nonparametric Bayesian Approach for Haplotype Reconstruction from Single and Multi-Population Data , 2007 .
[110] Roded Sharan,et al. Bayesian haplo-type inference via the dirichlet process , 2004, ICML.
[111] B. Schölkopf,et al. Modeling Dyadic Data with Binary Latent Factors , 2007 .
[112] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[113] Yee Whye Teh,et al. Collapsed Variational Dirichlet Process Mixture Models , 2007, IJCAI.
[114] Wei Li,et al. Nonparametric Bayes Pachinko Allocation , 2007, UAI.
[115] Michael I. Jordan,et al. Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[116] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[117] Dan Klein,et al. The Infinite PCFG Using Hierarchical Dirichlet Processes , 2007, EMNLP.
[118] Radford M. Neal,et al. Splitting and merging components of a nonconjugate Dirichlet process mixture model , 2007 .
[119] John D. Lafferty,et al. A correlated topic model of Science , 2007, 0708.3601.
[120] A. R. Ferreira da Silva. A Dirichlet process mixture model for brain MRI tissue classification. , 2007, Medical image analysis.
[121] Roland Memisevic,et al. Non-linear Latent Factor Models for Revealing Structure in High-dimensional Data , 2008 .
[122] Richard S. Zemel,et al. Learning stick-figure models using nonparametric Bayesian priors over trees , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[123] Jason A. Duan,et al. Modeling Disease Incidence Data with Spatial and Spatio Temporal Dirichlet Process Mixtures , 2008, Biometrical journal. Biometrische Zeitschrift.
[124] Babak Shahbaba,et al. Nonlinear Models Using Dirichlet Process Mixtures , 2007, J. Mach. Learn. Res..
[125] Runze Li,et al. Mixture of Gaussian Processes and its Applications , 2010 .