On the recursive sequence

Our aim in this paper is to investigate the boundedness, global asymptotic stability, and periodic character of solutions of the difference equation xn+1 = (γxn-1 + δxn-2)/(xn + xn-2), n = 0,1,..., where the parameters γ and δ and the initial conditions are positive real numbers.

[1]  Weifeng Su,et al.  On the Recursive Sequence , 2004 .

[2]  On a difference equation with 3-periodic coefficient , 2005 .

[3]  G. Ladas,et al.  On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .

[4]  C. Schinas,et al.  On a (k+1)-th order difference equation with a coefficient of period k+1 , 2005 .

[5]  Kenneth S. Berenhaut,et al.  The behaviour of the positive solutions of the difference equation , 2006 .

[6]  Kenneth S. Berenhaut,et al.  A note on positive non-oscillatory solutions of the difference equation , 2006 .

[7]  Stevo Stević Short Note: A Note on Periodic Character of a Difference Equation , 2004 .

[8]  E. Camouzis,et al.  Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures , 2001 .

[9]  H. M. El-Owaidy,et al.  On asymptotic behaviour of the difference equation xn+1=α+(xn-k/xn) , 2004, Appl. Math. Comput..

[10]  A. M. Ahmed,et al.  On asymptotic behaviour of the difference equation $$X_{N + 1} = \alpha + \frac{{X_{N - 1} ^P }}{{X_N ^P }}$$ , 2003 .

[11]  Lothar Berg,et al.  On the Asymptotics of Nonlinear Difference Equations , 2002 .

[12]  E. Camouzis,et al.  On Period-Two Convergence in Rational Equations , 2003 .

[13]  G. Ladas,et al.  On the Dynamics of with a Period-two Coefficient , 2004 .

[14]  Stevo Stević,et al.  On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .

[15]  Robert M. May,et al.  GLOBAL BEHAVIOR OF NONLINEAR DIFFERENCE EQUATIONS OF HIGHER ORDER WITH APPLICATIONS (Mathematics and its Applications 256) , 1995 .

[16]  On a nonautonomous difference equation with bounded coefficient , 2007 .

[17]  R. DeVault,et al.  Global behavior of solutions of the nonlinear difference equation , 2005 .