The Number of Satisfying Assignments of Random Regular k-SAT Formulas

Let $\Phi$ be a random $k$-SAT formula in which every variable occurs precisely $d$ times positively and $d$ times negatively. Assuming that $k$ is sufficiently large and that $d$ is slightly below the critical degree where the formula becomes unsatisfiable with high probability, we determine the limiting distribution of the logarithm of the number of satisfying assignments.

[1]  L. Kirousis,et al.  Approximating the unsatisfiability threshold of random formulas , 1998 .

[2]  Allan Sly,et al.  The number of solutions for random regular NAE-SAT , 2016, Probability Theory and Related Fields.

[3]  Amin Coja-Oghlan,et al.  The asymptotic k-SAT threshold , 2014, STOC.

[4]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[5]  Mikael Skoglund,et al.  Bounds on Threshold of Regular Random k-SAT , 2010, SAT.

[6]  Cristopher Moore,et al.  Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..

[7]  N. Wormald Some problems in the enumeration of labelled graphs , 1980, Bulletin of the Australian Mathematical Society.

[8]  Alan M. Frieze,et al.  Random k-Sat: A Tight Threshold For Moderately Growing k , 2005, Comb..

[9]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[10]  Svante Janson,et al.  Random Regular Graphs: Asymptotic Distributions and Contiguity , 1995, Combinatorics, Probability and Computing.

[11]  Lenka Zdeborová,et al.  The condensation transition in random hypergraph 2-coloring , 2011, SODA.

[12]  Konstantinos Panagiotou,et al.  Going after the k-SAT threshold , 2013, STOC '13.

[13]  Felicia Raßmann On the Number of Solutions in Random Hypergraph 2-Colouring , 2017, Electron. J. Comb..

[14]  Allan Sly,et al.  Satisfiability Threshold for Random Regular nae-sat , 2013, Communications in Mathematical Physics.

[15]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[16]  E. Bolthausen An estimate of the remainder in a combinatorial central limit theorem , 1984 .

[17]  Amin Coja-Oghlan,et al.  The condensation phase transition in the regular k-SAT model , 2016, APPROX-RANDOM.

[18]  Amin Coja-Oghlan,et al.  Chasing the k-colorability threshold , 2013 .

[19]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[20]  Allan Sly,et al.  Proof of the Satisfiability Conjecture for Large k , 2014, STOC.

[21]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[22]  Hanna D. Robalewska,et al.  1-Factorizations of random regular graphs , 1997, Random Struct. Algorithms.

[23]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[24]  D. McDonald,et al.  An elementary proof of the local central limit theorem , 1995 .