Efficient Interval Linear Equality Solving in Constraint Logic Programming

Existing interval constraint logic programming languages, such as BNR Prolog, work under the framework of interval narrowing and are deficient in solving systems of linear constraints over real numbers, which constitute an important class of problems in engineering and other applications. In this paper, we suggest to separate linear equality constraint solving from inequality and non-linear constraint solving. The implementation of an efficient interval linear constraint solver, which is based on the preconditioned interval Gauss-Seidel method, is proposed. We show how the solver can be adapted to incremental execution and incorporated into a constraint logic programming language already equipped with a non-linear solver based on interval narrowing. The two solvers share common interval variables, interact and cooperate in a round-robin fashion during computation, resulting in an efficient interval constraint arithmetic language CIAL. The CIAL prototypes, based on CLP(R), are constructed and compared favorably against several major interval constraint logic programming languages.

[1]  Nicolas Beldiceanu,et al.  Overview of the CHIP Compiler System , 1993, WCLP.

[2]  Jimmy Ho-Man Lee,et al.  Interval Linear Constraint Solving Using the Preconditioned Interval Gauss-Seidel Method , 1995, ICLP.

[3]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[4]  Christian Bessiere,et al.  Arc-Consistency and Arc-Consistency Again , 1993, Artif. Intell..

[5]  Hoon Hong,et al.  Improvements in cad-based quantifier elimination , 1990 .

[6]  Nicolas Beldiceanu,et al.  Constraint Logic Programming , 1997 .

[7]  William S. Havens,et al.  Hierarchical arc consistency: exploiting structured domains in constraint satisfaction problems , 1985 .

[8]  M. H. van Emden,et al.  Adapting CLP to Floating-Point Arithmetic , 1992, FGCS.

[9]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[10]  Phil Vasey,et al.  Qualified Answers and their Application to Transformation , 1986, ICLP.

[11]  Pascal Van Hentenryck A Gentle Introduction to NUMERICA , 1998, Artif. Intell..

[12]  Roland H. C. Yap,et al.  The CLP( R ) language and system , 1992, TOPL.

[13]  Akira Aiba,et al.  Constraints Logic Programming Language CAL , 1988, FGCS.

[14]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[15]  William S. Havens,et al.  A language for optimizing constraint propagation , 1993 .

[16]  Bruno Buchberger,et al.  Speeding-up Quantifier Elimination by Gr?bner Bases , 1991 .

[17]  W. Older,et al.  Extending Prolog with Constraint Arithmetic on Real Intervals , 1990 .

[18]  André Vellino,et al.  Constraint Arithmetic on Real Intervals , 1993, WCLP.

[19]  Hassan Aït-Kaci,et al.  Warren's Abstract Machine: A Tutorial Reconstruction , 1991 .

[20]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[21]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[22]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[23]  Pascal Van Hentenryck,et al.  The Constraint Logic Programming Language CHIP , 1988, FGCS.

[24]  M. H. van Emden,et al.  Interval Computation as Deduction in CHIP , 1993, J. Log. Program..

[25]  J. H. M. Lee,et al.  A WAM-based abstract machine for interval constraint logic programming , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[27]  A. Neumaier Overestimation in linear interval equations , 1987 .

[28]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[29]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[30]  Eldon Hansen,et al.  Bounding the solution of interval linear equations , 1992 .

[31]  Hoon Hong,et al.  Non-linear Real Constraints in Constraint Logic Programming , 1992, ALP.

[32]  Roland H. C. Yap,et al.  The CLP(R) Programmer's Manual Version 1.2 , 1992 .

[33]  David M. GAYt SOLVING INTERVAL LINEAR EQUATIONS , 1982 .

[34]  A. Neumaier Interval methods for systems of equations , 1990 .

[35]  William S. Havens,et al.  HIERARCHICAL ARC CONSISTENCY FOR DISJOINT REAL INTERVALS IN CONSTRAINT LOGIC PROGRAMMING , 1992, Comput. Intell..

[36]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[37]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[38]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[39]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[40]  Alain Colmerauer,et al.  An introduction to Prolog III , 1989, CACM.

[41]  Spiro Michaylov,et al.  Design and implementation of practical constraint logic programming systems , 1992 .

[42]  Jimmy Ho-Man Lee,et al.  Towards Practical Interval Constraint Solving in Logic Programming , 1994, ILPS.

[43]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[44]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[45]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[46]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.

[47]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[48]  Peter J. Stuckey,et al.  CLP(ℜ) and some electrical engineering problems , 1992, Journal of Automated Reasoning.