Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells.

Phosphorene, a monolayer of black phosphorus, is promising for nanoelectronic applications not only because it is a natural p-type semiconductor but also because it possesses a layer-number-dependent direct bandgap (in the range of 0.3 to 1.5 eV). On basis of the density functional theory calculations, we investigate electronic properties of the bilayer phosphorene with different stacking orders. We find that the direct bandgap of the bilayers can vary from 0.78 to 1.04 eV with three different stacking orders. In addition, a vertical electric field can further reduce the bandgap to 0.56 eV (at the field strength 0.5 V/Å). More importantly, we find that when a monolayer of MoS2 is superimposed with the p-type AA- or AB-stacked bilayer phosphorene, the combined trilayer can be an effective solar-cell material with type-II heterojunction alignment. The power conversion efficiency is predicted to be ∼18 or 16% with AA- or AB-stacked bilayer phosphorene, higher than reported efficiencies of the state-of-the-art trilayer graphene/transition metal dichalcogenide solar cells.

[1]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[2]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[3]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[4]  S. Salahuddin,et al.  Monolayer MoS2 transistors - ballistic performance limit analysis , 2011, 69th Device Research Conference.

[5]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[6]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[7]  James Hone,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[8]  Ting Yu,et al.  Terahertz conductivity of twisted bilayer graphene. , 2013, Physical review letters.

[9]  A Kis,et al.  Reply to 'Measurement of mobility in dual-gated MoS₂ transistors'. , 2013, Nature nanotechnology.

[10]  Shoji Suzuki,et al.  Electronic band structure of black phosphorus studied by angle-resolved ultraviolet photoelectron spectroscopy , 1985 .

[11]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[12]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[13]  Li-Ming Wu,et al.  SiC2 siligraphene and nanotubes: novel donor materials in excitonic solar cells. , 2013, Nano letters.

[14]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[15]  Sang Wook Lee,et al.  Breakdown of the interlayer coherence in twisted bilayer graphene. , 2012, Physical review letters.

[16]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[17]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[18]  G. Vaitheeswaran,et al.  Effect of van der Waals interactions on the structural and elastic properties of black phosphorus , 2012, 1211.3512.

[19]  MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. , 2013, Nanoscale.

[20]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[21]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[22]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[23]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[24]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[25]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[26]  W. Mei,et al.  MoS 2 /MX 2 heterobilayers: bandgap engineering via tensile strain or external electrical fi eld † , 2013 .

[27]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[28]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[29]  N. Lu,et al.  van der Waals trilayers and superlattices : modi fi cation of electronic structures of MoS 2 by intercalation † , 2014 .

[30]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[31]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[32]  van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. , 2014, Nanoscale.

[33]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[34]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[35]  J. Grossman,et al.  Semiconducting monolayer materials as a tunable platform for excitonic solar cells. , 2012, ACS nano.

[36]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[37]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[38]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[39]  X. Kong,et al.  Few-layer black phosphorus: emerging direct band gap semiconductor with high carrier mobility , 2014 .

[40]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[41]  H. Oberhofer,et al.  Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set. , 2010, The Journal of chemical physics.

[42]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[43]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[44]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[45]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[48]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[49]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[50]  D. Shen,et al.  Stacking-dependent optical conductivity of bilayer graphene. , 2010, ACS nano.

[51]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.