Quantum gravity from causal dynamical triangulations: a review

This topical review gives a comprehensive overview and assessment of recent results in Causal Dynamical Triangulations (CDT), a modern formulation of lattice gravity, whose aim is to obtain a theory of quantum gravity nonperturbatively from a scaling limit of the lattice-regularized theory. In this manifestly diffeomorphism-invariant approach one has direct, computational access to a Planckian spacetime regime, which is explored with the help of invariant quantum observables. During the last few years, there have been numerous new and important developments and insights concerning the theory's phase structure, the roles of time, causality, diffeomorphisms and global topology, the application of renormalization group methods and new observables. We will focus on these new results, primarily in four spacetime dimensions, and discuss some of their geometric and physical implications.

[1]  J. Jurkiewicz,et al.  Euclidian 4d quantum gravity with a non-trivial measure term , 2013, 1307.2270.

[2]  F. David LOOP EQUATIONS AND NON-PERTURBATIVE EFFECTS IN TWO-DIMENSIONAL QUANTUM GRAVITY , 1990 .

[3]  J. Jurkiewicz,et al.  Geometry of the quantum universe , 2010, 1001.4581.

[4]  Patrick R. Zulkowski,et al.  Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.

[5]  J. Jurkiewicz,et al.  Nonperturbative quantum de Sitter universe , 2008, 0807.4481.

[6]  A. Görlich,et al.  The effective action in 4-dim CDT. The transfer matrix approach , 2014, Journal of High Energy Physics.

[7]  A. Goerlich,et al.  CDT - an Entropic Theory of Quantum Gravity , 2010, 1007.2560.

[8]  Joshua H. Cooperman Renormalization of lattice-regularized quantum gravity models II. The case of causal dynamical triangulations , 2014, 1406.4531.

[9]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[10]  D. Diakonov,et al.  Non-Abelian Stokes theorems in the Yang-Mills and gravity theories , 2000, hep-th/0008035.

[11]  S. Jordan,et al.  Globally and locally causal dynamical triangulations , 2013 .

[12]  R. Loll,et al.  Discrete Lorentzian Quantum Gravity , 2000, hep-th/0011194.

[13]  A. Görlich,et al.  The transfer matrix in four-dimensional CDT , 2012, Journal of High Energy Physics.

[14]  U. Kraus,et al.  Sector models—A toolkit for teaching general relativity: I. Curved spaces and spacetimes , 2014, 1405.0323.

[15]  Z. Burda,et al.  4D SIMPLICIAL QUANTUM GRAVITY INTERACTING WITH GAUGE MATTER FIELDS , 1998 .

[16]  A. Görlich Causal Dynamical Triangulations in Four Dimensions , 2011 .

[18]  J. Jurkiewicz,et al.  Quantum Gravity, or The Art of Building Spacetime , 2006 .

[19]  Dmitri V. Krioukov,et al.  Causal set generator and action computer , 2018, Comput. Phys. Commun..

[20]  Steven Carlip,et al.  Dimension and dimensional reduction in quantum gravity , 2017, Universe.

[21]  H. Kleinert,et al.  Observational challenges for the standard FLRW model , 2015, 1512.03313.

[22]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[23]  J. Jurkiewicz,et al.  Quantum spacetime, from a practitioner's point of view , 2013, 1302.2181.

[24]  Joshua H. Cooperman Comments on "Searching for a continuum limit in CDT quantum gravity" , 2016, 1604.01798.

[25]  J. Laiho,et al.  Exploring Euclidean dynamical triangulations with a non-trivial measure term , 2014, 1401.3299.

[26]  Jerzy Jurkiewicz,et al.  Four-dimensional simplicial quantum gravity , 1992 .

[27]  R. Loll,et al.  Introducing quantum Ricci curvature , 2017, 1712.08847.

[28]  R. Loll,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .

[29]  J. Jurkiewicz,et al.  CDT and the Search for a Theory of Quantum Gravity , 2013, 1305.6680.

[30]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[31]  J. Jurkiewicz,et al.  Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.

[32]  Frank Saueressig,et al.  Towards Reconstructing the Quantum Effective Action of Gravity. , 2018, Physical review letters.

[33]  Herbert W. Hamber,et al.  Quantum gravity on the lattice , 2009, 0901.0964.

[34]  J. Jurkiewicz,et al.  Spectral dimension of the universe , 2005, hep-th/0505113.

[35]  Yuki Sato,et al.  2d CDT is 2d Hořava–Lifshitz quantum gravity , 2013, 1302.6359.

[36]  Petr Hořava Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.

[37]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[38]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[39]  A. Barvinsky,et al.  Renormalization of Hořava gravity , 2015, 1512.02250.

[40]  Daniele Oriti Approaches to Quantum Gravity , 2009 .

[41]  R. Loll,et al.  De Sitter Universe from Causal Dynamical Triangulations without Preferred Foliation , 2013, 1307.5469.

[42]  R. Loll,et al.  A new perspective on matter coupling in two-dimensional gravity. , 1999, hep-th/9904012.

[43]  J. Jurkiewicz,et al.  Semiclassical universe from first principles , 2004, hep-th/0411152.

[44]  J. Jurkiewicz,et al.  The phase structure of causal dynamical triangulations with toroidal spatial topology , 2018, Journal of High Energy Physics.

[45]  Roberto Percacci,et al.  An Introduction to Covariant Quantum Gravity and Asymptotic Safety , 2017 .

[46]  Joshua H. Cooperman On a renormalization group scheme for causal dynamical triangulations , 2016 .

[47]  A. Görlich,et al.  CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.

[48]  M. Hanada Markov Chain Monte Carlo for Dummies , 2018, 1808.08490.

[49]  Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order? , 2013, 1503.03706.

[50]  A. Görlich,et al.  Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.

[51]  J. Ambjorn,et al.  Causal dynamical triangulations and the quest for quantum gravity , 2010, 1004.0352.

[52]  J. Gizbert-Studnicki The effective action in four-dimensional CDT , 2015, 1510.08719.

[53]  Ambjorn,et al.  Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.

[54]  Kevin T. Grosvenor,et al.  Four-dimensional CDT with toroidal topology , 2017, 1705.07653.

[55]  K. Bolejko,et al.  Inhomogeneous cosmology and backreaction: Current status and future prospects , 2016, 1612.08222.

[56]  R. Loll,et al.  A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.

[57]  Jerzy Jurkiewicz,et al.  Searching for a continuum limit in causal dynamical triangulation quantum gravity , 2016, 1603.02076.

[58]  J. Ambjorn,et al.  Euclidean and Lorentzian Quantum Gravity Lessons from Two Dimensions , 1998, hep-th/9806241.

[59]  J. Maldacena The Quantum Spacetime , 2011 .

[60]  A. Görlich,et al.  CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY , 2013 .

[61]  M. Reuter,et al.  Quantum Gravity and the Functional Renormalization Group , 2019 .

[62]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[63]  B. Ruijl,et al.  Locally causal dynamical triangulations in two dimensions , 2015, 1507.04566.

[64]  J. Henson,et al.  Spacetime condensation in (2+1)-dimensional CDT from a Hořava–Lifshitz minisuperspace model , 2014, 1410.0845.

[65]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[66]  D. Benedetti,et al.  Capturing the phase diagram of (2  +  1)-dimensional CDT using a balls-in-boxes model , 2016, 1612.09533.

[67]  Jerzy Jurkiewicz,et al.  Second- and first-order phase transitions in causal dynamical triangulations , 2012 .

[68]  A. Görlich,et al.  The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.

[69]  D. Schaich,et al.  Testing the holographic principle using lattice simulations , 2017, 1710.06398.

[70]  Giuseppe Clemente,et al.  Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations , 2018, Physical Review D.

[71]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.

[72]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[73]  K. Wilson Confinement of Quarks , 1974 .

[74]  J. Jurkiewicz,et al.  Renormalization group flow in CDT , 2014, 1405.4585.

[75]  J. Jurkiewicz,et al.  Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.

[76]  M. Roček,et al.  Quantum regge calculus , 1981 .

[77]  R. Loll,et al.  Causal Dynamical Triangulations without preferred foliation , 2013, 1305.4582.

[78]  A. Görlich Introduction to Causal Dynamical Triangulations , 2013 .

[79]  R. Loll,et al.  Coupling a point-like mass to quantum gravity with causal dynamical triangulations , 2010, 1002.4618.

[80]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[81]  A. Ferraro,et al.  Running scales in causal dynamical triangulations , 2019, Physical Review D.

[82]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[83]  J. Jurkiewicz,et al.  New higher-order transition in causal dynamical triangulations , 2017, 1704.04373.

[84]  J. Ambjorn,et al.  Shaken, but not stirred—Potts model coupled to quantum gravity , 2008, 0806.3506.

[85]  R. Loll,et al.  The emergence of spacetime or quantum gravity on your desktop , 2007, 0711.0273.

[86]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[87]  J. Jurkiewicz,et al.  The Transfer Matrix in Four-Dimensional Causal Dynamical Triangulations , 2013, 1302.2210.

[88]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[89]  J. Jurkiewicz,et al.  Multiloop correlators for two-dimensional quantum gravity , 1990 .

[90]  J. Ambjorn,et al.  Non-perturbative 3d Lorentzian quantum gravity , 2000, hep-th/0011276.

[91]  T. Regge General relativity without coordinates , 1961 .

[92]  J. Jurkiewicz,et al.  The impact of topology in CDT quantum gravity , 2016 .

[93]  A. Görlich,et al.  Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.

[94]  J. Jurkiewicz,et al.  Recent results in CDT quantum gravity , 2015, 1509.08788.

[95]  Z. Burda,et al.  Quantum widening of a causal dynamical triangulations universe , 2012 .

[96]  Pseudo-topological transitions in 2D gravity models coupled to massless scalar fields , 2012, 1201.1590.

[97]  THE COSMOLOGICAL TIME FUNCTION , 1997, gr-qc/9709084.

[98]  R. Loll,et al.  Crossing the c=1 barrier in 2d Lorentzian quantum gravity , 1999 .

[99]  G. Thorleifsson,et al.  Singular vertices and the triangulation space of the D-sphere , 1995, hep-lat/9512012.

[100]  J. Jurkiewicz,et al.  Quantum Gravity via Causal Dynamical Triangulations , 2013, 1302.2173.

[101]  R. Loll,et al.  Implementing quantum Ricci curvature , 2018, 1802.10524.

[102]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[103]  A. Ashtekar,et al.  Springer Handbook of Spacetime , 2014 .

[104]  Sector models—a toolkit for teaching general relativity: II. Geodesics , 2018, European Journal of Physics.

[105]  Reconstructing the universe , 2005, hep-th/0505154.

[106]  Joshua H. Cooperman Scale-dependent homogeneity measures for causal dynamical triangulations , 2014, 1410.0632.

[107]  J. Jurkiewicz,et al.  Impact of topology in causal dynamical triangulations quantum gravity , 2016, 1604.08786.

[108]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[109]  R. Loll,et al.  CDT and Cosmology , 2017, 1703.08160.

[110]  G. Calcagni,et al.  Spectral dimension of quantum geometries , 2013, 1311.3340.

[111]  J. Jurkiewicz,et al.  Wilson loops in nonperturbative quantum gravity , 2015, 1504.01065.

[112]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[113]  A validation of causal dynamical triangulations , 2011, 1110.6875.

[114]  R. Loll,et al.  Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.

[115]  J. Jurkiewicz,et al.  Signature change of the metric in CDT quantum gravity? , 2015, Journal of High Energy Physics.

[116]  Exploring the new phase transition of CDT , 2015, 1510.08672.