Quantum gravity from causal dynamical triangulations: a review
暂无分享,去创建一个
[1] J. Jurkiewicz,et al. Euclidian 4d quantum gravity with a non-trivial measure term , 2013, 1307.2270.
[2] F. David. LOOP EQUATIONS AND NON-PERTURBATIVE EFFECTS IN TWO-DIMENSIONAL QUANTUM GRAVITY , 1990 .
[3] J. Jurkiewicz,et al. Geometry of the quantum universe , 2010, 1001.4581.
[4] Patrick R. Zulkowski,et al. Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.
[5] J. Jurkiewicz,et al. Nonperturbative quantum de Sitter universe , 2008, 0807.4481.
[6] A. Görlich,et al. The effective action in 4-dim CDT. The transfer matrix approach , 2014, Journal of High Energy Physics.
[7] A. Goerlich,et al. CDT - an Entropic Theory of Quantum Gravity , 2010, 1007.2560.
[8] Joshua H. Cooperman. Renormalization of lattice-regularized quantum gravity models II. The case of causal dynamical triangulations , 2014, 1406.4531.
[9] J. Jurkiewicz,et al. Nonperturbative quantum gravity , 2012, 1203.3591.
[10] D. Diakonov,et al. Non-Abelian Stokes theorems in the Yang-Mills and gravity theories , 2000, hep-th/0008035.
[11] S. Jordan,et al. Globally and locally causal dynamical triangulations , 2013 .
[12] R. Loll,et al. Discrete Lorentzian Quantum Gravity , 2000, hep-th/0011194.
[13] A. Görlich,et al. The transfer matrix in four-dimensional CDT , 2012, Journal of High Energy Physics.
[14] U. Kraus,et al. Sector models—A toolkit for teaching general relativity: I. Curved spaces and spacetimes , 2014, 1405.0323.
[15] Z. Burda,et al. 4D SIMPLICIAL QUANTUM GRAVITY INTERACTING WITH GAUGE MATTER FIELDS , 1998 .
[16] A. Görlich. Causal Dynamical Triangulations in Four Dimensions , 2011 .
[18] J. Jurkiewicz,et al. Quantum Gravity, or The Art of Building Spacetime , 2006 .
[19] Dmitri V. Krioukov,et al. Causal set generator and action computer , 2018, Comput. Phys. Commun..
[20] Steven Carlip,et al. Dimension and dimensional reduction in quantum gravity , 2017, Universe.
[21] H. Kleinert,et al. Observational challenges for the standard FLRW model , 2015, 1512.03313.
[22] Copenhagen,et al. Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.
[23] J. Jurkiewicz,et al. Quantum spacetime, from a practitioner's point of view , 2013, 1302.2181.
[24] Joshua H. Cooperman. Comments on "Searching for a continuum limit in CDT quantum gravity" , 2016, 1604.01798.
[25] J. Laiho,et al. Exploring Euclidean dynamical triangulations with a non-trivial measure term , 2014, 1401.3299.
[26] Jerzy Jurkiewicz,et al. Four-dimensional simplicial quantum gravity , 1992 .
[27] R. Loll,et al. Introducing quantum Ricci curvature , 2017, 1712.08847.
[28] R. Loll,et al. Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .
[29] J. Jurkiewicz,et al. CDT and the Search for a Theory of Quantum Gravity , 2013, 1305.6680.
[30] Carlo Rovelli. Quantum gravity , 2008, Scholarpedia.
[31] J. Jurkiewicz,et al. Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.
[32] Frank Saueressig,et al. Towards Reconstructing the Quantum Effective Action of Gravity. , 2018, Physical review letters.
[33] Herbert W. Hamber,et al. Quantum gravity on the lattice , 2009, 0901.0964.
[34] J. Jurkiewicz,et al. Spectral dimension of the universe , 2005, hep-th/0505113.
[35] Yuki Sato,et al. 2d CDT is 2d Hořava–Lifshitz quantum gravity , 2013, 1302.6359.
[36] Petr Hořava. Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.
[37] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[38] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[39] A. Barvinsky,et al. Renormalization of Hořava gravity , 2015, 1512.02250.
[40] Daniele Oriti. Approaches to Quantum Gravity , 2009 .
[41] R. Loll,et al. De Sitter Universe from Causal Dynamical Triangulations without Preferred Foliation , 2013, 1307.5469.
[42] R. Loll,et al. A new perspective on matter coupling in two-dimensional gravity. , 1999, hep-th/9904012.
[43] J. Jurkiewicz,et al. Semiclassical universe from first principles , 2004, hep-th/0411152.
[44] J. Jurkiewicz,et al. The phase structure of causal dynamical triangulations with toroidal spatial topology , 2018, Journal of High Energy Physics.
[45] Roberto Percacci,et al. An Introduction to Covariant Quantum Gravity and Asymptotic Safety , 2017 .
[46] Joshua H. Cooperman. On a renormalization group scheme for causal dynamical triangulations , 2016 .
[47] A. Görlich,et al. CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.
[48] M. Hanada. Markov Chain Monte Carlo for Dummies , 2018, 1808.08490.
[49] Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order? , 2013, 1503.03706.
[50] A. Görlich,et al. Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.
[51] J. Ambjorn,et al. Causal dynamical triangulations and the quest for quantum gravity , 2010, 1004.0352.
[52] J. Gizbert-Studnicki. The effective action in four-dimensional CDT , 2015, 1510.08719.
[53] Ambjorn,et al. Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.
[54] Kevin T. Grosvenor,et al. Four-dimensional CDT with toroidal topology , 2017, 1705.07653.
[55] K. Bolejko,et al. Inhomogeneous cosmology and backreaction: Current status and future prospects , 2016, 1612.08222.
[56] R. Loll,et al. A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.
[57] Jerzy Jurkiewicz,et al. Searching for a continuum limit in causal dynamical triangulation quantum gravity , 2016, 1603.02076.
[58] J. Ambjorn,et al. Euclidean and Lorentzian Quantum Gravity Lessons from Two Dimensions , 1998, hep-th/9806241.
[59] J. Maldacena. The Quantum Spacetime , 2011 .
[60] A. Görlich,et al. CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY , 2013 .
[61] M. Reuter,et al. Quantum Gravity and the Functional Renormalization Group , 2019 .
[62] Frank Saueressig,et al. The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.
[63] B. Ruijl,et al. Locally causal dynamical triangulations in two dimensions , 2015, 1507.04566.
[64] J. Henson,et al. Spacetime condensation in (2+1)-dimensional CDT from a Hořava–Lifshitz minisuperspace model , 2014, 1410.0845.
[65] Joe Henson,et al. Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.
[66] D. Benedetti,et al. Capturing the phase diagram of (2 + 1)-dimensional CDT using a balls-in-boxes model , 2016, 1612.09533.
[67] Jerzy Jurkiewicz,et al. Second- and first-order phase transitions in causal dynamical triangulations , 2012 .
[68] A. Görlich,et al. The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.
[69] D. Schaich,et al. Testing the holographic principle using lattice simulations , 2017, 1710.06398.
[70] Giuseppe Clemente,et al. Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations , 2018, Physical Review D.
[71] Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.
[72] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[73] K. Wilson. Confinement of Quarks , 1974 .
[74] J. Jurkiewicz,et al. Renormalization group flow in CDT , 2014, 1405.4585.
[75] J. Jurkiewicz,et al. Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.
[76] M. Roček,et al. Quantum regge calculus , 1981 .
[77] R. Loll,et al. Causal Dynamical Triangulations without preferred foliation , 2013, 1305.4582.
[78] A. Görlich. Introduction to Causal Dynamical Triangulations , 2013 .
[79] R. Loll,et al. Coupling a point-like mass to quantum gravity with causal dynamical triangulations , 2010, 1002.4618.
[80] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[81] A. Ferraro,et al. Running scales in causal dynamical triangulations , 2019, Physical Review D.
[82] Frank Saueressig,et al. Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.
[83] J. Jurkiewicz,et al. New higher-order transition in causal dynamical triangulations , 2017, 1704.04373.
[84] J. Ambjorn,et al. Shaken, but not stirred—Potts model coupled to quantum gravity , 2008, 0806.3506.
[85] R. Loll,et al. The emergence of spacetime or quantum gravity on your desktop , 2007, 0711.0273.
[86] D. Vassilevich,et al. Heat kernel expansion: user's manual , 2003, hep-th/0306138.
[87] J. Jurkiewicz,et al. The Transfer Matrix in Four-Dimensional Causal Dynamical Triangulations , 2013, 1302.2210.
[88] Y. Ollivier. Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.
[89] J. Jurkiewicz,et al. Multiloop correlators for two-dimensional quantum gravity , 1990 .
[90] J. Ambjorn,et al. Non-perturbative 3d Lorentzian quantum gravity , 2000, hep-th/0011276.
[91] T. Regge. General relativity without coordinates , 1961 .
[92] J. Jurkiewicz,et al. The impact of topology in CDT quantum gravity , 2016 .
[93] A. Görlich,et al. Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.
[94] J. Jurkiewicz,et al. Recent results in CDT quantum gravity , 2015, 1509.08788.
[95] Z. Burda,et al. Quantum widening of a causal dynamical triangulations universe , 2012 .
[96] Pseudo-topological transitions in 2D gravity models coupled to massless scalar fields , 2012, 1201.1590.
[97] THE COSMOLOGICAL TIME FUNCTION , 1997, gr-qc/9709084.
[98] R. Loll,et al. Crossing the c=1 barrier in 2d Lorentzian quantum gravity , 1999 .
[99] G. Thorleifsson,et al. Singular vertices and the triangulation space of the D-sphere , 1995, hep-lat/9512012.
[100] J. Jurkiewicz,et al. Quantum Gravity via Causal Dynamical Triangulations , 2013, 1302.2173.
[101] R. Loll,et al. Implementing quantum Ricci curvature , 2018, 1802.10524.
[102] J. Jurkiewicz,et al. The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.
[103] A. Ashtekar,et al. Springer Handbook of Spacetime , 2014 .
[104] Sector models—a toolkit for teaching general relativity: II. Geodesics , 2018, European Journal of Physics.
[105] Reconstructing the universe , 2005, hep-th/0505154.
[106] Joshua H. Cooperman. Scale-dependent homogeneity measures for causal dynamical triangulations , 2014, 1410.0632.
[107] J. Jurkiewicz,et al. Impact of topology in causal dynamical triangulations quantum gravity , 2016, 1604.08786.
[108] TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.
[109] R. Loll,et al. CDT and Cosmology , 2017, 1703.08160.
[110] G. Calcagni,et al. Spectral dimension of quantum geometries , 2013, 1311.3340.
[111] J. Jurkiewicz,et al. Wilson loops in nonperturbative quantum gravity , 2015, 1504.01065.
[112] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[113] A validation of causal dynamical triangulations , 2011, 1110.6875.
[114] R. Loll,et al. Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.
[115] J. Jurkiewicz,et al. Signature change of the metric in CDT quantum gravity? , 2015, Journal of High Energy Physics.
[116] Exploring the new phase transition of CDT , 2015, 1510.08672.