Electron beam nanosculpting of Kirkendall oxide nanochannels.

The nanomanipulation of metal nanoparticles inside oxide nanotubes, synthesized by means of the Kirkendall effect, is demonstrated. In this strategy, a focused electron beam, extracted from a transmission electron microscope source, is used to site-selectively heat the oxide material in order to generate and steer a metal ion diffusion flux inside the nanochannels. The metal ion flux generated inside the tube is a consequence of the reduction of the oxide phase occurring upon exposure to the e-beam. We further show that the directional migration of the metal ions inside the nanotubes can be achieved by locally tuning the chemistry and the morphology of the channel at the nanoscale. This allows sculpting organized metal nanoparticles inside the nanotubes with various sizes, shapes, and periodicities. This nanomanipulation technique is very promising since it enables creating unique nanostructures that, at present, cannot be produced by an alternative classical synthesis route.

[1]  R S Wolfe,et al.  Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.

[2]  R. Blakemore,et al.  Structure, morphology and crystal growth of bacterial magnetite , 1984, Nature.

[3]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[4]  P. Ajayan,et al.  Carbon onions as nanoscopic pressure cells for diamond formation , 1996, Nature.

[5]  D. Grier A revolution in optical manipulation , 2003, Nature.

[6]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[7]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[8]  Qiguang Li,et al.  Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. , 2005, Nano letters.

[9]  Cover Picture: Nanometer‐Scale Modification and Welding of Silicon and Metallic Nanowires with a High‐Intensity Electron Beam (Small 12/2005) , 2005 .

[10]  Mato Knez,et al.  Monocrystalline spinel nanotube fabrication based on the Kirkendall effect , 2006, Nature materials.

[11]  A. Alivisatos,et al.  Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals , 2006 .

[12]  Margit Zacharias,et al.  Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. , 2007, Small.

[13]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[14]  Hirotaro Mori,et al.  Hollow oxide formation by oxidation of Al and Cu nanoparticles , 2007 .

[15]  U. Gösele,et al.  Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. , 2007, Nano letters.

[16]  Elena V. Shevchenko,et al.  Gold/Iron Oxide Core/Hollow‐Shell Nanoparticles , 2008 .

[17]  D R G Mitchell,et al.  DiffTools: Electron diffraction software tools for DigitalMicrograph™ , 2008, Microscopy research and technique.

[18]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[19]  D. Mitchell DiffTools: Electron diffraction software tools for DigitalMicrograph™ , 2008, Microscopy research and technique.

[20]  U. Gösele,et al.  Transmission electron microscopy in situ fabrication of ZnO/Al2O3 composite nanotubes by electron-beam-irradiation-induced local etching of ZnO/Al2O3 core/shell nanowires. , 2008, Small.

[21]  F. Banhart,et al.  Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 A diameter. , 2009, Nano letters.

[22]  Transition in the nanoporous structure of iron oxides during the oxidation of iron nanoparticles and nanowires , 2009 .

[23]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[24]  Yong Peng,et al.  Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. , 2009, Nano letters.

[25]  Kun Zheng,et al.  Electron-beam-assisted superplastic shaping of nanoscale amorphous silica , 2010, Nature communications.

[26]  W. Chim,et al.  Formation of Nickel Oxide Nanotubes with Uniform Wall Thickness by Low‐Temperature Thermal Oxidation Through Understanding the Limiting Effect of Vacancy Diffusion and the Kirkendall Phenomenon , 2010 .

[27]  J. B. Tracy,et al.  Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles. , 2010, ACS nano.

[28]  J. Zuo,et al.  Electron beam stimulated molecular motions. , 2011, ACS nano.

[29]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[30]  J. Aizpurua,et al.  Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. , 2011, Nano letters.

[31]  Chang‐Hwan Choi,et al.  Tunable two-mirror interference lithography system for wafer-scale nanopatterning. , 2011, Optics letters.

[32]  Diameter dependence of the void formation in the oxidation of nickel nanowires. , 2011, Nanotechnology.

[33]  Lin-wang Wang,et al.  Electron beam manipulation of nanoparticles. , 2012, Nano letters.

[34]  Hui Xiong,et al.  Hollow iron oxide nanoparticles for application in lithium ion batteries. , 2012, Nano letters.

[35]  W. Xu,et al.  From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces. , 2012, Physical review letters.

[36]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[37]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[38]  A. Alivisatos,et al.  Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. , 2013, Nano letters.

[39]  Wei Xu,et al.  Simple Holographic Patterning for High‐Aspect‐Ratio Three‐Dimensional Nanostructures with Large Coverage Area , 2013 .

[40]  A. El Mel,et al.  Highly ordered hollow oxide nanostructures: the Kirkendall effect at the nanoscale. , 2013, Small.

[41]  Y. Bando,et al.  Local Coulomb explosion of boron nitride nanotubes under electron beam irradiation. , 2013, ACS nano.

[42]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[43]  Michael Walls,et al.  Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals. , 2013, ACS nano.