A mining-based approach for efficient enumeration of algebraic structures
暂无分享,去创建一个
Majid Ali Khan | Shahabuddin Muhammad | Asif Ali | Mohammad Nazeeruddin | M. Khan | Shahabuddin Muhammad | Asif Ali | M. Nazeeruddin
[1] Mohammed J. Zaki. Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..
[2] Stanley E. Bammel,et al. The number of 9 × 9 latin squares , 1975, Discrete Mathematics.
[3] H. W. Norton. THE 7 × 7 SQUARES , 1939 .
[4] Brendan D. McKay,et al. Practical graph isomorphism, II , 2013, J. Symb. Comput..
[5] Rory A. Fisher,et al. The 6 × 6 Latin squares , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] Ramakrishnan Srikant,et al. Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.
[7] Erich Schönhardt. Über lateinische Quadrate und Unionen. , 1930 .
[8] Brendan D. McKay,et al. Latin Squares of Order 10 , 1995, Electron. J. Comb..
[9] Mark B. Wells,et al. The number of latin squares of order eight , 1967 .
[10] B. McKay,et al. Small latin squares, quasigroups, and loops , 2007 .
[11] Abhishek Parakh,et al. An Efficient Quasigroup Block Cipher , 2012, Wireless Personal Communications.
[12] Majid Ali Khan,et al. A mining-based approach for efficient enumeration of algebraic structures , 2016, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).
[13] Ramakrishnan Srikant,et al. Fast algorithms for mining association rules , 1998, VLDB 1998.
[14] John Wesley Brown,et al. Enumeration of latin squares with application to order 8 , 1968 .
[15] Arthur Cayley. The Collected Mathematical Papers: On Latin squares , 2009 .
[16] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[17] John Slaney,et al. Counting loops with the inverse property , 2008 .
[18] Warwick Harvey,et al. Groups and Constraints: Symmetry Breaking during Search , 2002, CP.
[19] S. M. Jacob. The Enumeration of the Latin Rectangle of Depth Three by Means of a Formula of Reduction, with other Theorems Relating to Non‐Clashing Substitutions and Latin Squares , 2022 .
[20] Ian M. Wanless,et al. On the Number of Latin Squares , 2005, 0909.2101.
[21] Albert Sade,et al. An Omission in Norton's List of $7 \times 7$ Squares , 1951 .