Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics

The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described.

[1]  A. Pisano,et al.  Experimentally validated aluminum nitride based pressure, temperature and 3-axis acceleration sensors integrated on a single chip , 2014, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).

[2]  Isao Shimoyama,et al.  An air flow sensor modeled on wind receptor hairs of insects , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[3]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[4]  Massimo De Vittorio,et al.  Biomimetics of underwater hair cell sensing , 2015 .

[5]  W. Claassen,et al.  Influence of Deposition Temperature, Gas Pressure, Gas Phase Composition, and RF Frequency on Composition and Mechanical Stress of Plasma Silicon Nitride Layers , 1985 .

[6]  Zheyao Wang,et al.  A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement , 2010 .

[7]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[8]  G. Franz Low Pressure Plasmas and Microstructuring Technology , 2009 .

[9]  Adrian Klein,et al.  Micro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts , 2015, Micromachines.

[10]  C Abels,et al.  A bio-inspired real-time capable artificial lateral line system for freestream flow measurements. , 2016, Bioinspiration & biomimetics.

[11]  Massimo De Vittorio,et al.  Piezoelectric ultrasonic transducer based on flexible AlN , 2014 .

[12]  Junliang Tao,et al.  Hair flow sensors: from bio-inspiration to bio-mimicking—a review , 2012 .

[13]  Zhen Fang,et al.  Drag force micro solid state silicon plate wind velocity sensor , 2009 .

[14]  Richard J. Przybyla,et al.  Air-coupled aluminum nitride piezoelectric micromachined ultrasonic transducers at 0.3 MHz TO 0.9 MHz , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[15]  Peng Liu,et al.  A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish , 2016, Applied bionics and biomechanics.

[16]  S. Coombs,et al.  Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater flow detection , 2009 .

[17]  Chang Liu,et al.  Foundations of MEMS , 2006 .

[18]  M. Allen,et al.  An all-polymer airflow sensor using a piezoresistive composite elastomer , 2009 .

[19]  N. Jackson Influence of silicon crystal orientation on piezoelectric textured aluminium nitride deposited on metal electrodes , 2016 .

[20]  M. D. Vittorio,et al.  Flexible Force Sensor Based on C-axis Oriented Aluminum Nitride , 2014 .

[21]  Chien-Hsiung Tsai,et al.  A microcantilever-based gas flow sensor for flow rate and direction detection , 2008, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[22]  S. Lederman,et al.  The physiology and psychophysics of touch , 1988 .

[23]  Yipeng Lu,et al.  Modeling, Fabrication, and Characterization of Piezoelectric Micromachined Ultrasonic Transducer Arrays Based on Cavity SOI Wafers , 2015, Journal of Microelectromechanical Systems.

[24]  Leandro Lorenzelli,et al.  Flexible Tactile Sensors Using Screen-Printed P(VDF-TrFE) and MWCNT/PDMS Composites , 2015, IEEE Sensors Journal.

[25]  Chulki Kim,et al.  A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique , 2014 .

[26]  Mohd Rizal Arshad,et al.  Review of MEMS flow sensors based on artificial hair cell sensor , 2011 .

[27]  Enrique Iborra,et al.  Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications , 2004 .

[28]  H. Bleckmann,et al.  Flow Sensing in Air and Water , 2014, Springer Berlin Heidelberg.

[29]  Adriana Passaseo,et al.  AlN on polysilicon piezoelectric cantilevers for sensors/actuators , 2009 .

[30]  Simona Petroni,et al.  Low stiffness tactile transducers based on AlN thin film and polyimide , 2015 .

[31]  Zhigang Suo,et al.  Periodic patterns and energy states of buckled films on compliant substrates , 2011 .

[32]  Lukasz Nieradko,et al.  AlN as an actuation material for MEMS applications: The case of AlN driven multilayered cantilevers , 2008 .

[33]  Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor , 2009 .

[34]  Jack Chen,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Design and Fabrication of Artificial Lateral Line Flow Sensors 1. Underwater Flow Sensing , 2022 .

[35]  H. Bleckmann,et al.  Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals , 2011, Beilstein journal of nanotechnology.

[36]  M. D. Vittorio,et al.  Parylene-coated bioinspired artificial hair cell for liquid flow sensing , 2012 .

[37]  Firas Sammoura,et al.  Self-curved diaphragms by stress engineering for highly responsive pMUT , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[38]  Adrian Klein,et al.  μ-biomimetic flow-sensors—introducing light-guiding PDMS structures into MEMS , 2015, Bioinspiration & biomimetics.

[39]  Sungchul Kang,et al.  A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor , 2014, Sensors.

[40]  Paul Muralt,et al.  Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering , 2001 .

[41]  Bernhard E. Boser,et al.  Pulse-Echo Ultrasound Imaging Using an AlN Piezoelectric Micromachined Ultrasonic Transducer Array With Transmit Beam-Forming , 2016, Journal of Microelectromechanical Systems.

[42]  W. K. Purves Life: The Science of Biology , 1985 .

[43]  J. Liao,et al.  The Hydrodynamics of Flow Stimuli , 2013 .

[44]  M. Amato,et al.  Advanced MEMS Technologies for Tactile Sensing and Actuation , 2017 .

[45]  Richard Przybyla,et al.  An ultrasonic rangefinder based on an AlN piezoelectric micromachined ultrasound transducer , 2010, 2010 IEEE Sensors.

[46]  Simona Petroni,et al.  Piezoelectric soft MEMS for tactile sensing and energy harvesting , 2014, 2014 IEEE International Conference on IC Design & Technology.

[47]  Piezoelectric ALN cantilever array on a SU-8 substrate for flexible artificial basilar membrane , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[48]  Guo-Hua Feng A piezoelectric dome-shaped-diaphragm transducer for microgenerator applications , 2007 .

[49]  Lily D. Chambers,et al.  Parylene conformal coating encapsulation as a method for advanced tuning of mechanical properties of an artificial hair cell , 2013 .

[50]  J. Chen,et al.  Polyurethane rubber as a MEMS material: characterization and demonstration of an all-polymer two-axis artificial hair cell flow sensor , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[51]  G. Fortunato,et al.  Low-temperature flexible piezoelectric AlN capacitor integrated on ultra-flexible poly-Si TFT for advanced tactile sensing , 2014, IEEE SENSORS 2014 Proceedings.

[52]  Chang Liu,et al.  High-Sensitivity Bi-Directional Flow Sensor Based on Biological Inspiration of Animal Haircell Sensors , 2006, 2006 5th IEEE Conference on Sensors.

[53]  D. Horsley,et al.  Highly responsive curved aluminum nitride pMUT , 2014, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).

[54]  Nannan Chen,et al.  Hydrogel‐Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast , 2007 .

[55]  J. J. Schneider,et al.  A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles , 2016, Nanotechnology.

[56]  Imin Kao,et al.  Smart MEMS Flow Sensor: Theoretical Analysis and Experimental Characterization , 2007, IEEE Sensors Journal.

[57]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[58]  J. Engel,et al.  Two-Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies , 2003 .

[59]  M. Ortiz,et al.  Delamination of Compressed Thin Films , 1997 .

[60]  B. Boser,et al.  Aluminum nitride pMUT based on a flexurally-suspended membrane , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[61]  Nathan Jackson,et al.  Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications , 2013 .

[62]  G. Metta,et al.  Deposition, processing and characterization of P(VDF-TrFE) thin films for sensing applications , 2008, 2008 IEEE Sensors.

[63]  R. Cingolani,et al.  Stress-driven AlN cantilever-based flow sensor for fish lateral line system , 2011 .

[64]  Yonggang Huang,et al.  Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring , 2014, Nature Communications.

[65]  Sheryl Coombs,et al.  The Lateral Line System , 2014, Springer Handbook of Auditory Research.

[66]  . Ababneha,et al.  c-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes , 2012 .

[67]  Matthias Durr,et al.  Analysis And Design Principles Of Mems Devices , 2016 .

[68]  R. Reif IV-1 – Plasma-Enhanced Chemical Vapor Deposition , 1991 .

[69]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[70]  M. G. Allen,et al.  Exploitation of aeroelastic effects for drift reduction in an all-polymer air flow sensor , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[71]  Wenhui Ma Flexoelectricity: strain gradient effects in ferroelectrics , 2007 .

[72]  J. Engel,et al.  Design and Characterization of Artificial Haircell Sensor for Flow Sensing With Ultrahigh Velocity and Angular Sensitivity , 2007, Journal of Microelectromechanical Systems.

[73]  Shurong Dong,et al.  Deposition of c-axis orientation aluminum nitride films on flexible polymer substrates by reactive direct-current magnetron sputtering , 2012 .

[74]  Tan Shi-zhe,et al.  Underwater artificial lateral line flow sensors , 2014 .

[75]  N. V. Thakor,et al.  Bio-mimetic strategies for tactile sensing , 2013, 2013 IEEE SENSORS.

[76]  Maurizio Valle,et al.  Tactile Sensing Technologies , 2013 .

[77]  William Megill,et al.  Stress-Driven Artificial Hair Cell for Flow Sensing , 2014 .

[78]  Paolo Dario,et al.  Sensors and Sensory Systems for Advanced Robots , 1988, NATO ASI Series.

[79]  R. Johansson,et al.  Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. , 1984, Human neurobiology.

[80]  Zhan Zhao,et al.  Micro solid state silicon plate wind velocity sensor , 2009, 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[81]  M. Schulz,et al.  Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer , 2008, Journal of Microelectromechanical Systems.

[82]  Massimo De Vittorio,et al.  Aluminum Nitride piezo-MEMS on polyimide flexible substrates , 2011 .

[83]  Firas Sammoura,et al.  CMOS-compatible AlN piezoelectric micromachined ultrasonic transducers , 2009, 2009 IEEE International Ultrasonics Symposium.

[84]  Nathan Jackson,et al.  Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene , 2017 .

[85]  C. Chiang,et al.  A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure , 2007, Sensors.