Canonical Test Cases for High-Order Unstructured Implicit Large Eddy Simulation

[1]  Robert Plato,et al.  Concise Numerical Mathematics , 2003 .

[2]  Siva Nadarajah,et al.  Adaptive IMEX Time-Stepping for the Correction Procedure via Reconstruction Scheme , 2013 .

[3]  Paul G. Tucker,et al.  LES of Impingement Heat Transfer on a Concave Surface , 2010 .

[4]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[5]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[6]  M. Brachet Direct simulation of three-dimensional turbulence in the Taylor–Green vortex , 1991 .

[7]  Marcel Lesieur,et al.  Large-eddy simulations of compressible turbulent flows , 1998 .

[8]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[9]  Ye Zhou,et al.  A note on kinetic energy, dissipation and enstrophy , 1998 .

[10]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[11]  Christer Fureby,et al.  Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research , 2009 .

[12]  James R. DeBonis,et al.  De-Aliasing Through Over-Integration Applied to the Flux Reconstruction and Discontinuous Galerkin Methods , 2015 .

[13]  Marcel Vinokur,et al.  Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids , 2004 .

[14]  F. Grinstein,et al.  Large Eddy simulation of high-Reynolds-number free and wall-bounded flows , 2002 .

[15]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[16]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[17]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[18]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[19]  Haiyang Gao,et al.  A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids , 2011 .

[20]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[21]  Antony Jameson,et al.  Insights from von Neumann analysis of high-order flux reconstruction schemes , 2011, J. Comput. Phys..

[22]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[23]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[24]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[25]  Zhi Jian Wang,et al.  A conservative correction procedure via reconstruction formulation with the Chain-Rule divergence evaluation , 2013, J. Comput. Phys..

[26]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[27]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[28]  S. Corrsin,et al.  Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence , 1971, Journal of Fluid Mechanics.

[29]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[30]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[31]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[32]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[33]  Sylvain Lardeau,et al.  Applied large eddy simulation , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Brian C. Vermeire,et al.  ILES Using the Correction Procedure via Reconstruction Scheme , 2013 .

[35]  James R. DeBonis,et al.  A Survey of the Isentropic Euler Vortex Problem Using High-Order Methods , 2015 .

[36]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[37]  P. Sagaut,et al.  Large Eddy Simulation for Compressible Flows , 2009 .

[38]  Jessica Gullbrand,et al.  Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow Using Three-Dimensional Explicit Filtering , 2003 .

[39]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[40]  U. Piomelli,et al.  Subgrid-Scale Models for Compressible Large-Eddy Simulations , 2000, Theoretical and Computational Fluid Dynamics.

[41]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[42]  R. B. Dean Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow , 1978 .

[43]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[44]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[45]  Freddie D. Witherden,et al.  On the Utility of High-Order Methods for Unstructured Grids: A Comparison Between PyFR and Industry Standard Tools , 2015 .

[46]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[47]  D. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method , 1996 .