Nonlinear feature transformation and deep fusion for Alzheimer's Disease staging analysis

Abstract In this study, we develop a novel nonlinear metric learning method to improve biomarker identification for Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI). Formulated under a constrained optimization framework, the proposed method learns a smooth nonlinear feature space transformation that makes the mapped data more linearly separable for SVMs. The thin-plate spline (TPS) is chosen as the geometric model due to its remarkable versatility and representation power in generating sophisticated yet smooth deformations. In addition, a deep network based feature fusion strategy through stacked denoising sparse auto-encoder (DSAE) is adopted to integrate cross-sectional and longitudinal features estimated from MR brain images. Using the ADNI dataset, we evaluate the effectiveness of the proposed feature transformation and feature fusion strategies and demonstrate the improvements over the state-of-the-art solutions within the same category.

[1]  Changshui Zhang,et al.  Learning similarity metric with SVM , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[2]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[3]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[4]  Alexander Hammers,et al.  Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation , 2009, NeuroImage.

[5]  Boonserm Kijsirikul,et al.  A new kernelization framework for Mahalanobis distance learning algorithms , 2010, Neurocomputing.

[6]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .

[7]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[8]  Deva Ramanan,et al.  Local Distance Functions: A Taxonomy, New Algorithms, and an Evaluation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  A. Mitchell,et al.  Rate of progression of mild cognitive impairment to dementia – meta‐analysis of 41 robust inception cohort studies , 2009, Acta psychiatrica Scandinavica.

[10]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[11]  Daoqiang Zhang,et al.  Multimodal classification of Alzheimer's disease and mild cognitive impairment , 2011, NeuroImage.

[12]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Kernel Machines , 2012, ArXiv.

[13]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[14]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[15]  Dinggang Shen,et al.  A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI , 2015, MICCAI.

[16]  Dinggang Shen,et al.  COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements , 2007, IEEE Transactions on Medical Imaging.

[17]  Daoqiang Zhang,et al.  Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis , 2014, Human brain mapping.

[18]  Hae-Sang Park,et al.  A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..

[19]  Ivor W. Tsang,et al.  Learning with Idealized Kernels , 2003, ICML.

[20]  Jiayan Jiang,et al.  Learning a mixture of sparse distance metrics for classification and dimensionality reduction , 2011, 2011 International Conference on Computer Vision.

[21]  Daoqiang Zhang,et al.  View‐centralized multi‐atlas classification for Alzheimer's disease diagnosis , 2015, Human brain mapping.

[22]  Daoqiang Zhang,et al.  Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease , 2017, IEEE Transactions on Biomedical Engineering.

[23]  Marc Sebban,et al.  A Survey on Metric Learning for Feature Vectors and Structured Data , 2013, ArXiv.

[24]  Karl J. Friston,et al.  Voxel-based morphometry of the human brain: Methods and applications , 2005 .

[25]  Melanie Hilario,et al.  Feature Weighting Using Margin and Radius Based Error Bound Optimization in SVMs , 2009, ECML/PKDD.

[26]  Seong-Whan Lee,et al.  Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis , 2014, NeuroImage.

[27]  D. Shen,et al.  Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features , 2012, Neurobiology of Aging.

[28]  Sidong Liu,et al.  Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease , 2015, IEEE Transactions on Biomedical Engineering.

[29]  Nick C Fox,et al.  Automatic classification of MR scans in Alzheimer's disease. , 2008, Brain : a journal of neurology.

[30]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[31]  Amir Globerson,et al.  Metric Learning by Collapsing Classes , 2005, NIPS.

[32]  G. Wahba Spline models for observational data , 1990 .

[33]  Anthony Maida,et al.  Natural Image Bases to Represent Neuroimaging Data , 2013, ICML.

[34]  Marie Chupin,et al.  Automatic classi fi cation of patients with Alzheimer ' s disease from structural MRI : A comparison of ten methods using the ADNI database , 2010 .

[35]  Lorenzo Torresani,et al.  Large Margin Component Analysis , 2006, NIPS.

[36]  A. Dale,et al.  Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. , 2011, Radiology.

[37]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[38]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[39]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[40]  Alexandros Kalousis,et al.  Parametric Local Metric Learning for Nearest Neighbor Classification , 2012, NIPS.

[41]  Seong-Whan Lee,et al.  Latent feature representation with stacked auto-encoder for AD/MCI diagnosis , 2013, Brain Structure and Function.

[42]  R. Petersen,et al.  Mild cognitive impairment , 2006, The Lancet.

[43]  Daoqiang Zhang,et al.  Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment , 2016, IEEE Transactions on Medical Imaging.

[44]  Daniel Rueckert,et al.  Injury markers predict time to dementia in subjects with MCI and amyloid pathology , 2012, Neurology.

[45]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[46]  Dinggang Shen,et al.  Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition , 2015, NeuroImage.