Calculation of the Casimir energy at zero and finite temperature: Some recent results

This survey summarizes briefly results obtained recently in the Casimir energy studies devoted to the following subjects: i) account of the material characteristics of the media in calculations of the vacuum energy (for example, Casimir energy of a dilute dielectric ball); ii) application of the spectral geometry methods for investigating the vacuum energy of quantized fields with the goal to gain some insight, specifically, in the geometrical origin of the divergences that enter the vacuum energy and to develop the relevant renormalization procedure; iii) a universal method for calculating the high temperature dependence of the Casimir energy in terms of heat kernel coefficients. A special attention is payed to the mathematical tools applied in this field, namely, to the spectral zeta function method and heat kernel technique.

[1]  V. Mostepanenko,et al.  Vacuum quantum effects in strong fields , 1994 .

[2]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[3]  Frank Borg,et al.  Partial Differential Equations in Classical Mathematical Physics , 1998 .

[4]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[5]  F. Wilczek Quantum Field Theory , 1998, hep-th/9803075.

[6]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[7]  V. Mostepanenko,et al.  The Casimir Effect and Its Applications , 1997 .

[8]  M. Bordag Quantum Field Theory Under the Influence of External Conditions , 1996 .

[9]  Henry Margenau,et al.  Van der waals forces , 1939 .

[10]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[11]  H. Laster,et al.  Encyclopedia of physics. , 1966, Science.

[12]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[13]  Peter W. Milonni,et al.  The Quantum Vacuum: An Introduction to Quantum Electrodynamics , 1993 .

[14]  M. Bordag The Casimir Effect 50 Years Later, Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 14-18, 1998 , 1999 .

[15]  E. Elizalde Ten Physical Applications of Spectral Zeta Functions , 1995 .

[16]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[17]  Spectral functions in mathematics and physics , 2000, hep-th/0007251.

[18]  Kimball A. Milton The Casimir Effect: Physical Manifestations of Zero-Point Energy , 1999 .

[19]  Christin Wirth,et al.  Finite Temperature Field Theory , 1997 .

[20]  C. Papas,et al.  Electromagnetic Waveguides and Resonators , 1958 .

[21]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[22]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[23]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[24]  Arnold Sommerfeld,et al.  Vorlesungen über theoretische Physik , 1950 .

[25]  G. Esposito Quantum Gravity, Quantum Cosmology and Lorentzian Geometries , 1994 .

[26]  Mark D.Roberts,et al.  Vacuum Energy , 2000, hep-th/0012062.

[27]  E. Elizalde Quantum Field Theory under the Influence of External Conditions , 2006 .