Algebraic Multigrid (AMG) for Higher-Order Finite Elements

Two related approaches for solving linear systems that arise from a higher-order nite element discretization of elliptic partial dieren tial equations are described. The rst approach explores direct application of an algebraic-based multigrid method (AMG) to iteratively solve the linear systems that result from higher-order discretizations. While the choice of basis used on the discretization has a signican t impact on the performance of the solver, results indicate that AMG is capable of solving operators from both Poisson’s equation and a rst-order system least-squares (FOSLS) formulation of Stoke’s equation in a scalable manner, nearly independent of basis order, p, for 3 < p 8. The second approach incorporates preconditioning based on a bilinear nite element mesh overlaying the entire set of degrees of freedom in the higher-order scheme. AMG is applied to the operator based on bilinear nite elements and is used as a preconditioner in a conjugate gradient (CG) iteration to solve the algebraic system derived from the high-order discretization. This approach is also nearly independent of p. Although the total iteration count is slightly higher than using AMG accelerated by CG directly on the high-order operator, the preconditioned approach has the advantage of a straightforward matrix-free implementation of the high-order operator, thereby avoiding typically large computational and storage costs.

[1]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[2]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[3]  Thomas A. Manteuffel,et al.  First-order system least squares (FOSLS) for coupled fluid-elastic problems , 2004 .

[4]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[5]  Michel O. Deville,et al.  Finite-Element Preconditioning for Pseudospectral Solutions of Elliptic Problems , 1990, SIAM J. Sci. Comput..

[6]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .

[7]  Yvon Maday,et al.  Numerical analysis of a multigrid method for spectral approximations , 1989 .

[8]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[9]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[10]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[11]  Sven Beuchler Multigrid Solver for the Inner Problem in Domain Decomposition Methods for p-FEM , 2002, SIAM J. Numer. Anal..

[12]  Paul F. Fischer,et al.  Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method , 2005, J. Sci. Comput..

[13]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[14]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[15]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[16]  Ning Hu,et al.  Multi-p Preconditioners , 1997, SIAM J. Sci. Comput..

[17]  K. Stüben A review of algebraic multigrid , 2001 .

[18]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[19]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[20]  Paul F. Fischer,et al.  Fast Parallel Direct Solvers for Coarse Grid Problems , 2001, J. Parallel Distributed Comput..

[21]  Jan Mandel,et al.  Two-level domain decomposition preconditioning for the p-version finite element method in three dimensions , 1990 .

[22]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[23]  Margherita Pagani,et al.  Second Edition , 2004 .

[24]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[27]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[28]  Michel Deville,et al.  Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning , 1985 .

[29]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..