Depleted lithosphere from the mantle wedge beneath Tres Lagos, southern Patagonia, Argentina

[1]  D. Morata,et al.  Spinel-facies mantle xenoliths from Cerro Redondo, Argentine Patagonia: Petrographic, geochemical, and isotopic evidence of interaction between xenoliths and host basalt , 2005 .

[2]  T. Ntaflos,et al.  The upper mantle beneath Patagonia, Argentina, documented by xenoliths from alkali basalts , 2005 .

[3]  C. Stern Active Andean volcanism: its geologic and tectonic setting , 2004 .

[4]  R. Vannucci,et al.  The backarc mantle lithosphere in Patagonia, South America , 2004 .

[5]  M. Thöni,et al.  Ordovician meta-pegmatite garnet (N-W Ötztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm–Nd age during mylonitization , 2004 .

[6]  W. Griffin,et al.  The origin and evolution of Archean lithospheric mantle , 2003 .

[7]  W. Griffin,et al.  Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China , 2003 .

[8]  R. Kilian,et al.  Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths , 2002 .

[9]  S. Kay,et al.  Mantle Processes and Sources of Neogene Slab Window Magmas from Southern Patagonia, Argentina , 2001 .

[10]  B. Wood,et al.  Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman Province potassic magmas , 2001 .

[11]  S. Kay,et al.  Carbonatite metasomatized peridotite xenoliths from southern Patagonia: implications for lithospheric processes and Neogene plateau magmatism , 2000 .

[12]  J. Blundy,et al.  SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C , 2000 .

[13]  B. Wood,et al.  The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt , 2000 .

[14]  W. Griffin,et al.  Genesis of Young Lithospheric Mantle in Southeastern China: an LAM–ICPMS Trace Element Study , 2000 .

[15]  R. Kilian,et al.  Evidence from mantle xenoliths for relatively thin (<100 km) continental lithosphere below the Phane , 1999 .

[16]  V. Ramos Plate tectonic setting of the Andean Cordillera , 1999 .

[17]  M. Norman Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia , 1998 .

[18]  I. Jackson The Earth's Mantle: Composition, Structure, and Evolution , 1998 .

[19]  H. Palme,et al.  The Earth's Mantle: Composition of the Silicate Earth: Implications for Accretion and Core Formation , 1998 .

[20]  S. Kay,et al.  Neogene Patagonian plateau lavas: Continental magmas associated with ridge collision at the Chile Triple Junction , 1997 .

[21]  R. Kilian,et al.  Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone , 1996 .

[22]  A. Sobolev,et al.  Incompatible Element Partitioning between Clinopyroxene and Basalt Liquid Revealed by the Study of Melt Inclusions in Minerals from Troodos Lavas, Cyprus , 1996 .

[23]  W. McDonough,et al.  The composition of the Earth , 1995 .

[24]  E. Watson,et al.  High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts , 1994 .

[25]  M. Fisk,et al.  High-field-strength element partitioning between pyroxene and basaltic to dacitic magmas , 1994 .

[26]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[27]  P. Hack,et al.  Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar , 1994 .

[28]  S. Hart,et al.  Experimental cpx/melt partitioning of 24 trace elements , 1993 .

[29]  R. Nielsen,et al.  The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere , 1992 .

[30]  R. Batiza,et al.  An empirical method for calculating melt compositions produced beneath mid-ocean ridges : application for axis and off-axis (seamounts) melting. , 1991 .

[31]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[32]  T. Köhler,et al.  Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications , 1990 .

[33]  H. Dick,et al.  Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites , 1990 .

[34]  C. Stern,et al.  Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America , 1990 .

[35]  Richard P. Taylor,et al.  Cordilleran slab windows , 1989 .

[36]  H. Stockman,et al.  The Ronda high temperature peridotite: Geochemistry and petrogenesis , 1985 .

[37]  V. Benoit,et al.  Equilibrium state of diopside-bearing harzburgites from ophiolites: Geobarometric and geodynamic implications , 1984 .

[38]  Hugo Daniel Pezzuchi Estudio geológico de la zona de Estancia Dos Hermanos-Estancia 25 de Marzo y adyacencias, Departamento Deseado, provincia de Santa Cruz , 1978 .

[39]  A. Nicolas,et al.  Textures and Fabrics of Upper-Mantle Peridotites as Illustrated by Xenoliths from Basalts , 1975 .