Computational models of neuron-astrocyte interaction in epilepsy

Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability, and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computational models of astrocytic involvement in epileptogenesis, focusing on their relevance to existing physiological data.

[1]  M. de Curtis,et al.  An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold , 2010, PLoS biology.

[2]  Eshel Ben-Jacob,et al.  A Tale of Two Stories: Astrocyte Regulation of Synaptic Depression and Facilitation , 2011, PLoS Comput. Biol..

[3]  A. Araque,et al.  Glutamate‐dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons , 1998, The European journal of neuroscience.

[4]  Kevin J. Staley,et al.  Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures , 2009, Neuron.

[5]  S. Schiff,et al.  The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics , 2008, Journal of Computational Neuroscience.

[6]  P. Haydon,et al.  Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Michael M. Halassa,et al.  Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. , 2010, Annual review of physiology.

[8]  Liang Peng,et al.  Energy Metabolism in Astrocytes: High Rate of Oxidative Metabolism and Spatiotemporal Dependence on Glycolysis/Glycogenolysis , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  T. Sejnowski,et al.  Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. , 2005, Cerebral cortex.

[10]  Gaute T. Einevoll,et al.  Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms , 2011, Journal of Computational Neuroscience.

[11]  S. Nadkarni,et al.  Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? , 2003, Physical review letters.

[12]  J. White,et al.  Epilepsy in Small-World Networks , 2004, The Journal of Neuroscience.

[13]  Terrence J. Sejnowski,et al.  Modelling Vesicular Release at Hippocampal Synapses , 2010, PLoS Comput. Biol..

[14]  Mu-ming Poo,et al.  ATP Released by Astrocytes Mediates Glutamatergic Activity-Dependent Heterosynaptic Suppression , 2003, Neuron.

[15]  T. Sejnowski,et al.  Network Bistability Mediates Spontaneous Transitions between Normal and Pathological Brain States , 2010, The Journal of Neuroscience.

[16]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[17]  A. Hodgkin,et al.  The after‐effects of impulses in the giant nerve fibres of Loligo , 1956, The Journal of physiology.

[18]  Igor Timofeev,et al.  Posttraumatic Epilepsy: The Roles of Synaptic Plasticity , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[19]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Geoffrey T Manley,et al.  Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin‐4 water channels , 2006, Glia.

[21]  G. Somjen,et al.  Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. , 2000, Journal of neurophysiology.

[22]  Gaute T. Einevoll,et al.  Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space , 2009, PLoS Comput. Biol..

[23]  Wade Morishita,et al.  Control of Synaptic Strength by Glial TNFα , 2002, Science.

[24]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[25]  G. Turrigiano Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same , 1999, Trends in Neurosciences.

[26]  M. Sofroniew Molecular dissection of reactive astrogliosis and glial scar formation , 2009, Trends in Neurosciences.

[27]  M. BAZHENOV,et al.  Title : A computational model of neuronal and glial homeostatic synaptic plasticity in posttraumatic epileptogenesis , 2011 .

[28]  M. Simard,et al.  The neurobiology of glia in the context of water and ion homeostasis , 2004, Neuroscience.

[29]  Daniel P Kiehart,et al.  Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube. , 2010, Developmental biology.

[30]  J. Benda Single neuron dynamics , 2002 .

[31]  Maxim Bazhenov,et al.  Topological basis of epileptogenesis in a model of severe cortical trauma. , 2011, Journal of neurophysiology.

[32]  Maxim Bazhenov,et al.  Slow State Transitions of Sustained Neural Oscillations by Activity-Dependent Modulation of Intrinsic Excitability , 2006, The Journal of Neuroscience.

[33]  Peter A. Tass,et al.  Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes , 2008, Biological Cybernetics.

[34]  Jochen Triesch,et al.  Epileptogenesis due to glia-mediated synaptic scaling , 2009, Journal of The Royal Society Interface.

[35]  L. Roux,et al.  Over Astroglial Networks: a Step Further in Neuroglial and Gliovascular Interactions , 2022 .

[36]  Christian Steinhäuser,et al.  Astrocyte dysfunction in neurological disorders: a molecular perspective , 2006, Nature Reviews Neuroscience.

[37]  Eshel Ben-Jacob,et al.  From network structure to network reorganization: implications for adult neurogenesis , 2010, Physical biology.

[38]  Jokubas Ziburkus,et al.  The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics , 2008, Journal of Computational Neuroscience.

[39]  W. Hauser,et al.  A population-based study of seizures after traumatic brain injuries. , 1998, The New England journal of medicine.

[40]  Michael M. Halassa,et al.  The tripartite synapse , 2009 .

[41]  J. Russell,et al.  Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. , 1994, Journal of neurobiology.

[42]  J. Cavazos,et al.  Post-traumatic epilepsy: an overview. , 2010, Therapy.

[43]  R. C. Reyes,et al.  Models of astrocytic Ca dynamics and epilepsy. , 2008, Drug discovery today. Disease models.

[44]  S. Goldman,et al.  New roles for astrocytes: Redefining the functional architecture of the brain , 2003, Trends in Neurosciences.

[45]  M. Perc,et al.  Gap Junctions and Epileptic Seizures – Two Sides of the Same Coin? , 2011, PloS one.

[46]  Carissa G. Fonseca,et al.  Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy , 2002, Brain Research.

[47]  T A Pedley,et al.  The role of extracellular potassium in hippocampal epilepsy. , 1976, Archives of neurology.

[48]  Eshel Ben-Jacob,et al.  Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks , 2010, PLoS Comput. Biol..

[49]  G. Somjen,et al.  Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures. , 1976, Electroencephalography and clinical neurophysiology.

[50]  Eshel Ben-Jacob,et al.  The Astrocyte as a Gatekeeper of Synaptic Information Transfer , 2006, Neural Computation.

[51]  Sonia Gasparini,et al.  Reduction of K+ Uptake in Glia Prevents Long-Term Depression Maintenance and Causes Epileptiform Activity , 1997, The Journal of Neuroscience.

[52]  Yehezkel Ben-Ari,et al.  The multiple facets of γ-aminobutyric acid dysfunction in epilepsy: review , 2005, Current opinion in neurology.

[53]  E. Nagelhus,et al.  Aquaporin-4 in the central nervous system: Cellular and subcellular distribution and coexpression with KIR4.1 , 2004, Neuroscience.

[54]  Peter Jung,et al.  Astrocytes Optimize the Synaptic Transmission of Information , 2008, PLoS Comput. Biol..

[55]  Ivan Soltesz,et al.  Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. , 2005, Journal of neurophysiology.

[56]  H. Othmer,et al.  Spatiotemporal characteristics of calcium dynamics in astrocytes. , 2009, Chaos.

[57]  U. Heinemann,et al.  The Impact of Astrocytic Gap Junctional Coupling on Potassium Buffering in the Hippocampus , 2006, The Journal of Neuroscience.

[58]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[59]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[60]  Gina G. Turrigiano,et al.  Tumor Necrosis Factor-α Signaling Maintains the Ability of Cortical Synapses to Express Synaptic Scaling , 2010, The Journal of Neuroscience.

[61]  George J Augustine,et al.  Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures , 2010, The Journal of Neuroscience.

[62]  A. Cornell-Bell,et al.  Human epileptic astrocytes exhibit increased gap junction coupling , 1995, Glia.

[63]  Maxim Bazhenov,et al.  Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation , 2011, Proceedings of the National Academy of Sciences.

[64]  T. Sejnowski,et al.  Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. , 2004, Journal of neurophysiology.

[65]  J. Fritschy,et al.  Epilepsy, E/I Balance and GABAA Receptor Plasticity , 2008, Frontiers in molecular neuroscience.

[66]  David C. Spray,et al.  The astrocytic syncytium , 2003 .

[67]  Maxim Bazhenov,et al.  Pathological Effect of Homeostatic Synaptic Scaling on Network Dynamics in Diseases of the Cortex , 2008, The Journal of Neuroscience.

[68]  M. Bazhenov,et al.  Ionic Dynamics Mediate Spontaneous Termination of Seizures and Postictal Depression State , 2011, The Journal of Neuroscience.

[69]  H. Kager,et al.  Computer simulations of neuron-glia interactions mediated by ion flux , 2008, Journal of Computational Neuroscience.

[70]  J. Glowinski,et al.  Activity-Dependent Neuronal Control of Gap-Junctional Communication in Astrocytes , 2000, The Journal of cell biology.

[71]  Ole P. Ottersen,et al.  Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of α-syntrophin-null mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Haydon Glia: listening and talking to the synapse , 2001, Nature Reviews Neuroscience.

[73]  T. Sejnowski,et al.  Potassium Dynamics in the Epileptic Cortex: New Insights on an Old Topic , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[74]  Michael M. Halassa,et al.  The tripartite synapse: roles for gliotransmission in health and disease. , 2007, Trends in molecular medicine.

[75]  Takahiro Takano,et al.  Loss of Astrocytic Domain Organization in the Epileptic Brain , 2008, The Journal of Neuroscience.

[76]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[77]  E. Syková,et al.  Astroglial networks scale synaptic activity and plasticity , 2011, Proceedings of the National Academy of Sciences.