Reversible Circuit Realizations of Boolean Functions

Reversible circuits are a concrete model of reversible computation with applications in areas such as quantum computing and analysis of cryptographic block cyphers. In 1980, Toffoli showed how to realize a Boolean function by a reversible circuit, however the resulting complexity of such circuits has remained an open problem. We investigate the reversible circuit complexity of families of Boolean functions and derive conditions that characterize whether a polynomial realization is possible.

[1]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[2]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[3]  Ming Li,et al.  Reversible simulation of irreversible computation , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[4]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[5]  D. DiVincenzo Quantum gates and circuits , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  R. Feynman Quantum mechanical computers , 1986 .

[7]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[8]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[9]  Richard Cleve Complexity Theoretic Issues Concerning Block Ciphers Related to D.E.S , 1990, CRYPTO.

[10]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[12]  M. Karnaugh The map method for synthesis of combinational logic circuits , 1953, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[13]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[14]  Harry Buhrman,et al.  Time and Space Bounds for Reversible Simulation , 2001, ICALP.

[15]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[16]  D. Coppersmith,et al.  Generators for Certain Alternating Groups with Applications to Cryptography , 1975 .

[17]  Leslie G. Valiant,et al.  Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.

[18]  Alan T. Sherman,et al.  A Note on Bennett's Time-Space Tradeoff for Reversible Computation , 1990, SIAM J. Comput..

[19]  Pierre McKenzie,et al.  Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..

[20]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[21]  Oded Goldreich,et al.  DES-like functions can generate the alternating group , 1983, IEEE Trans. Inf. Theory.

[22]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[23]  Ming Li,et al.  Reversible Simulation of Irreversible Computation by Pebble Games , 1997, ArXiv.

[24]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[25]  J. Maxwell,et al.  Theory of Heat , 1892 .

[26]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.