Controlling the stepwise closing of identical DTE photochromic units with electrochemical and optical stimuli.

The full or stepwise controlled closing of identical photochromic dithienylethene units in the same molecule was addressed with a combination of electrochemical and optical stimuli in a trimetallic carbon-rich ruthenium complex.

[1]  A. Caneschi,et al.  A carbon-rich ruthenium decorated dysprosium single molecule magnet. , 2012, Chemical communications.

[2]  M. Drescher,et al.  Fully delocalized (ethynyl)(vinyl)phenylene bridged triruthenium complexes in up to five different oxidation states. , 2012, Inorganic chemistry.

[3]  P. Low,et al.  Ligand Redox Non‐Innocence in Transition‐Metal σ‐Alkynyl and Related Complexes , 2012 .

[4]  M. Samoć,et al.  Metal alkynyl complexes as switchable NLO systems , 2011 .

[5]  K. Costuas,et al.  Polynuclear carbon-rich organometallic complexes: clarification of the role of the bridging ligand in the redox properties. , 2011, Dalton transactions.

[6]  D. Jacquemin,et al.  Interplay Between Electronic and Steric Effects in Multiphotochromic Diarylethenes , 2011 .

[7]  O. Maury,et al.  d-f heterobimetallic association between ytterbium and ruthenium carbon-rich complexes: redox commutation of near-IR luminescence. , 2011, Journal of the American Chemical Society.

[8]  I. Ciofini,et al.  A theoretical spectroscopy investigation of bifunctional platinum-bridged diarylethenes , 2011 .

[9]  Hok-Lai Wong,et al.  Photochromic alkynes as versatile building blocks for metal alkynyl systems: design, synthesis, and photochromic studies of diarylethene-containing platinum(II) phosphine alkynyl complexes. , 2011, Inorganic chemistry.

[10]  M. Akita Photochromic Organometallics, A Stimuli-Responsive System: An Approach to Smart Chemical Systems† , 2011 .

[11]  B. Feringa,et al.  Electrochemical and photochemical cyclization and cycloreversion of diarylethenes and diarylethene-capped sexithiophene wires. , 2011, ACS nano.

[12]  Gang Xu,et al.  Inorganic-organic hybrid photochromic materials. , 2010, Chemical communications.

[13]  V. Guerchais,et al.  Recent developments in the field of metal complexes containing photochromic ligands: Modulation of linear and nonlinear optical properties , 2010 .

[14]  T. Kawai,et al.  Recent progress of luminescent metal complexes with photochromic units , 2010 .

[15]  S. Delbaere,et al.  Bridging the visible: the modulation of the absorption by more than 450 nm. , 2010, Organic letters.

[16]  Stefan Hecht,et al.  Photoswitches: From Molecules to Materials , 2010, Advanced materials.

[17]  W. Kaim,et al.  Quantum chemical interpretation of redox properties of ruthenium complexes with vinyl and TCNX type non-innocent ligands , 2010 .

[18]  Yuya Tanaka,et al.  Photochromic organometallics with a dithienylethene (DTE) Bridge, [Y-C[triple bond]C-DTE-C[triple bond]C-Y] (Y={MCp*(dppe)}): photoswitchable molecular wire (M=Fe) versus dual photo- and electrochromism (M=Ru). , 2010, Chemistry.

[19]  D. O′Hare,et al.  Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. , 2010, Chemical reviews.

[20]  V. Maurel,et al.  "Chain-like" trimetallic ruthenium complexes with C7 carbon-rich bridges: experimental and theoretical investigations of electronic communication tuning in five distinct oxidation states. , 2010, Journal of the American Chemical Society.

[21]  V. Yam,et al.  Transition metal complexes with photochromic ligands—photosensitization and photoswitchable properties , 2010 .

[22]  J. Zuo,et al.  Linear trimer of diruthenium linked by butadiyn-diyl units: a unique electronic wire. , 2010, Angewandte Chemie.

[23]  M. O. Wolf,et al.  Successful bifunctional photoswitching and electronic communication of two platinum(II) acetylide bridged dithienylethenes. , 2009, Journal of the American Chemical Society.

[24]  Shenghua Liu,et al.  Syntheses and Properties of Binuclear Ruthenium Vinyl Complexes with Dithienylethene Units as Multifunction Switches , 2009 .

[25]  Hok-Lai Wong,et al.  Design and synthesis of a new class of photochromic diarylethene-containing dithieno[3,2-b:2',3'-d]pyrroles and their switchable luminescence properties. , 2009, Chemistry.

[26]  N. Katsonis,et al.  Nano-electronic switches , 2009 .

[27]  H. Abruña,et al.  Transition-metal tris-bipyridines containing three dithienylcyclopentenes: synthesis, photochromic, and electrochromic properties. , 2009, Inorganic chemistry.

[28]  V. Yam,et al.  Photochromic diarylethene-containing ionic liquids and N-heterocyclic carbenes. , 2009, Journal of the American Chemical Society.

[29]  C. Lagrost,et al.  A multifunctional organometallic switch with carbon-rich ruthenium and diarylethene units. , 2008, Chemical communications.

[30]  Joakim Andréasson,et al.  Molecular all-photonic encoder-decoder. , 2008, Journal of the American Chemical Society.

[31]  H. Nishihara,et al.  Photochrome-coupled metal complexes: molecular processing of photon stimuli. , 2008, Dalton transactions.

[32]  C. Olivier,et al.  Redox-Active Molecular Wires Incorporating Ruthenium(II) σ-Arylacetylide Complexes for Molecular Electronics , 2008 .

[33]  N. Branda,et al.  Bidirectional Ring‐Opening and Ring‐Closing of Cationic 1,2‐Dithienylcyclopentene Molecular Switches Triggered with Light or Electricity , 2007 .

[34]  H. Tian,et al.  Photochromic bisthienylethene as multi-function switches. , 2007, Chemical communications.

[35]  M. Samoć,et al.  Electrochemical switching of the cubic nonlinear optical properties of an aryldiethynyl-linked heterobimetallic complex between three distinct states. , 2006, Angewandte Chemie.

[36]  Eunkyoung Kim,et al.  Synthesis and photochromic reactivity of macromolecules incorporating four dithienylethene units , 2005 .

[37]  Anuradha Gupta,et al.  Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions. , 2005, Journal of the American Chemical Society.

[38]  Tibor Kudernac,et al.  Oxidative electrochemical switching in dithienylcyclopentenes, part 1: effect of electronic perturbation on the efficiency and direction of molecular switching. , 2005, Chemistry.

[39]  G. Guirado,et al.  Understanding electrochromic processes initiated by dithienylcyclopentene cation-radicals. , 2005, The journal of physical chemistry. B.

[40]  Kenji Matsuda,et al.  Electrochemical cyclization/cycloreversion reactions of diarylethenes. , 2005, Organic letters.

[41]  Kenji Matsuda,et al.  Photochromic reaction of a fused dithienylethene: multicolor photochromism. , 2003, Angewandte Chemie.

[42]  Q. Luo,et al.  Mono‐Bisthienylethene Ring‐Fused versus Multi‐Bisthienylethene Ring‐Fused Photochromic Hybrids , 2003 .