A 3D-printed, functionally graded soft robot powered by combustion
暂无分享,去创建一个
Robert J. Wood | George M. Whitesides | Michael T. Tolley | James C. Weaver | Katia Bertoldi | Johannes T. B. Overvelde | Bobak Mosadegh | Nicholas W. Bartlett | G. Whitesides | B. Mosadegh | K. Bertoldi | R. Wood | M. Tolley | J. Overvelde | J. Weaver
[1] Filip Ilievski,et al. Soft robotics for chemists. , 2011, Angewandte Chemie.
[2] Matteo Cianchetti,et al. Soft Robotics: New Perspectives for Robot Bodyware and Control , 2014, Front. Bioeng. Biotechnol..
[3] Sung-Hoon Ahn,et al. Review of manufacturing processes for soft biomimetic robots , 2009 .
[4] J. Ashby. References and Notes , 1999 .
[5] L. Wilkinson. Immunity , 1891, The Lancet.
[6] Stephen A. Morin,et al. Using explosions to power a soft robot. , 2013, Angewandte Chemie.
[7] Fumiya Iida,et al. The challenges ahead for bio-inspired 'soft' robotics , 2012, CACM.
[8] R. Pfeifer,et al. Self-Organization, Embodiment, and Biologically Inspired Robotics , 2007, Science.
[9] Radhika Nagpal,et al. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.
[10] Cecilia Laschi,et al. Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.
[11] Ying Wang,et al. Cell-in-cell , 2013, Oncoimmunology.
[12] R. Siegwart,et al. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems , 2002 .
[13] Frank W. Zok,et al. The Transition from Stiff to Compliant Materials in Squid Beaks , 2008, Science.
[14] Emanuel Azizi,et al. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement , 2011, Journal of Experimental Biology.
[15] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[16] T. R. Guess,et al. Comparison of butt tensile strength data with interface corner stress intensity factor prediction , 1993 .
[17] G. Palli. Intelligent Robots And Systems , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).
[18] MajidiCarmel,et al. Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .
[19] D. Rus,et al. Design, fabrication and control of soft robots , 2015, Nature.
[20] Paolo Dario,et al. Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.
[21] G. Kiczales,et al. Proceedings the , 1997 .
[22] Huai-Ti Lin,et al. GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.
[23] H. Tanaka,et al. Applying a flexible microactuator to robotic mechanisms , 1992, IEEE Control Systems.
[24] Ian D. Walker,et al. Soft robotics: Biological inspiration, state of the art, and future research , 2008 .
[25] P. de Vos,et al. Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems , 2014, Front. Bioeng. Biotechnol..
[26] Filip Ilievski,et al. Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.
[27] Daniela Rus,et al. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.
[28] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[29] Daniela Rus,et al. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.
[30] LoepfeMichael,et al. An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion , 2015 .
[31] R. Ogden. Non-Linear Elastic Deformations , 1984 .
[32] LipsonHod,et al. Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .