An Adjoint-Based Parameter Identification Algorithm Applied to Planar Cell Polarity Signaling

This paper presents an adjoint-based algorithm for performing automatic parameter identification on differential equation models of biological systems. The algorithm locally solves an optimization problem, in which the cost reflects the deviation between the observed data and the output of the parameterized mathematical model, and the constraints are the governing parameterized equations. The tractability and the speed of convergence (to local minima) of the algorithm are strongly favorable to numerical parameter search algorithms which do not make use of the adjoint. Furthermore, initializing the algorithm with different instantiations of the parameters allows one to effectively search the parameter space. Results of the application of this algorithm to a previously presented mathematical model of planar cell polarity (PCP) signaling in the wings of Drosophila melanogaster are presented, and some new insights into the PCP mechanism that are enabled by the algorithm are described.

[1]  P. Adler,et al.  Planar signaling and morphogenesis in Drosophila. , 2002, Developmental cell.

[2]  J. Axelrod,et al.  Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. , 2001, Genes & development.

[3]  Keith Amonlirdviman Mathematical Modeling of Planar Cell Polarity Signaling in the Drosophila Melanogaster Wing , 2005 .

[4]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[5]  Eduardo D. Sontag,et al.  Neural Networks for Control , 1993 .

[6]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[7]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[8]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[9]  Stein Ivar Steinshamn,et al.  Estimation of Biological and Economic Parameters of a Bioeconomic Fisheries Model Using Dynamical Data Assimilation , 2002 .

[10]  Albert Goldbeter,et al.  A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  Philip E. Gill,et al.  Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..

[13]  Jens Schröter,et al.  Parameter Estimation in Dynamical Models , 1998 .

[14]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[15]  D. Strutt,et al.  The asymmetric subcellular localisation of components of the planar polarity pathway. , 2002, Seminars in cell & developmental biology.

[16]  Bernard Marcos,et al.  Parameters estimation of an aquatic biological system by the adjoint method , 1988 .

[17]  C. Tomlin,et al.  Mathematical Modeling of Planar Cell Polarity to Understand Domineering Nonautonomy , 2005, Science.

[18]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[19]  Philip E. Gill,et al.  Practical optimization , 1981 .

[20]  M. Scott,et al.  Prickle Mediates Feedback Amplification to Generate Asymmetric Planar Cell Polarity Signaling , 2002, Cell.

[21]  Jeffrey D. Axelrod,et al.  Fidelity in planar cell polarity signalling , 2003, Nature.

[22]  Robin L. Raffard Optimal control of systems governed by differential equations with applications in air traffic management and systems biology , 2006 .

[23]  G. Golderer,et al.  Nitric oxide synthase is induced in sporulation of Physarum polycephalum. , 2001, Genes & development.