Novel pharmacological modulators of autophagy: an updated patent review (2012-2015)

ABSTRACT Introduction: Autophagy is a lysosome-dependent degradation pathway that maintains cellular homeostasis in response to a variety of cellular stresses. Accumulating reports based on animal models have indicated the importance of this catabolic program in many human pathophysiological conditions, including diabetes, neurodegenerative diseases, aging, and cancers. Therefore, autophagy has been highlighted as a novel therapeutic target with a wide range of beneficial effects on human diseases. Here, we review the recent advances of our knowledge toward autophagy, as well as the efforts for developing autophagy modulators. Areas covered: The relevant patents (published at 2012–2015) and the research literature claiming the pharmacological modulation of autophagy are reviewed. Also, their molecular mechanisms and potential therapeutic utilities are discussed. Expert opinion: Considering the molecular machinery involved in autophagy induction, the targeting of autophagy-specific protein is very important to design the therapeutic interventions for specifically treating a variety of autophagy-associated disorders. Many patents and the research literature described in this review have shown promising applications of the relevant autophagy modulators for cancer or neurodegeneration treatments, a few of which are already being considered for clinical evaluation. However, most patents have claimed the modulators of autophagy with little information regarding their mechanisms of action. To design highly potent therapeutics, further work, such as developing compounds that specifically target the autophagy-specific machinery, are required.

[1]  B. Kuhn,et al.  Identification of New ATG4B Inhibitors Based on a Novel High-Throughput Screening Platform , 2017, SLAS discovery : advancing life sciences R & D.

[2]  N. Ktistakis,et al.  Digesting the Expanding Mechanisms of Autophagy. , 2016, Trends in cell biology.

[3]  A. Cuervo,et al.  Role of chaperone‐mediated autophagy in metabolism , 2016, The FEBS journal.

[4]  A. Brunet,et al.  AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. , 2016, Trends in cell biology.

[5]  F. Mastaglia,et al.  Sporadic inclusion body myositis: A review of recent clinical advances and current approaches to diagnosis and treatment , 2016, Clinical Neurophysiology.

[6]  S. McKeown,et al.  Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. , 2016, Gene.

[7]  H. Osiewacz,et al.  Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy , 2016, Mechanisms of Ageing and Development.

[8]  E. Jabbour Chronic myeloid leukemia: First‐line drug of choice , 2016, American journal of hematology.

[9]  Sangeeta Khare,et al.  Guidelines for the use and interpretation of assays formonitoring autophagy (3rd edition) , 2016 .

[10]  K. Guan,et al.  AMPK and autophagy in glucose/glycogen metabolism. , 2015, Molecular aspects of medicine.

[11]  D. Klionsky,et al.  Post‐translationally‐modified structures in the autophagy machinery: an integrative perspective , 2015, The FEBS journal.

[12]  K. Shokat,et al.  Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. , 2015, Bioorganic & medicinal chemistry.

[13]  S Shoji-Kawata,et al.  [Identification of a candidate therapeutic autophagy-inducing peptide]. , 2015, Seikagaku. The Journal of Japanese Biochemical Society.

[14]  B. Tang,et al.  Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications , 2015, Neuroscience Bulletin.

[15]  John M Asara,et al.  Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. , 2015, Molecular cell.

[16]  M. Bartoszewicz,et al.  Phenylbutyric Acid: simple structure - multiple effects. , 2015, Current pharmaceutical design.

[17]  W. Engel,et al.  Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. , 2015, Biochimica et biophysica acta.

[18]  I. Ganley,et al.  Pharmacological Inhibition of ULK1 Kinase Blocks Mammalian Target of Rapamycin (mTOR)-dependent Autophagy* , 2015, The Journal of Biological Chemistry.

[19]  Q. Zhong Faculty Opinions recommendation of Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. , 2015 .

[20]  G. Kroemer Autophagy: a druggable process that is deregulated in aging and human disease. , 2015, The Journal of clinical investigation.

[21]  K. Guan,et al.  mTOR: a pharmacologic target for autophagy regulation. , 2015, The Journal of clinical investigation.

[22]  C. Thompson,et al.  Autophagy in cellular metabolism and cancer. , 2015, The Journal of clinical investigation.

[23]  K. Shokat,et al.  Structure of the Human Autophagy Initiating Kinase ULK1 in Complex with Potent Inhibitors , 2014, ACS chemical biology.

[24]  M. Mathieu,et al.  Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. , 2014, Journal of medicinal chemistry.

[25]  Lorenzo Galluzzi,et al.  Metabolic Control of Autophagy , 2014, Cell.

[26]  Jean-Pierre Marquette,et al.  A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. , 2014, Nature chemical biology.

[27]  Xiao-Ming Yin,et al.  A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors , 2014, Autophagy.

[28]  John A. Tallarico,et al.  Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo , 2014, Nature Cell Biology.

[29]  Jiahuai Han,et al.  The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. , 2014, Cell metabolism.

[30]  Michael J. Munson,et al.  Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase , 2014, The Biochemical journal.

[31]  J. Coll,et al.  Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules , 2014, Autophagy.

[32]  A. Troxel,et al.  Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma , 2014, Autophagy.

[33]  S. Shao,et al.  Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia , 2014, International journal of oncology.

[34]  Xiaoya Li,et al.  Anti-tumor activities of matrine and oxymatrine: literature review , 2014, Tumor Biology.

[35]  Chang S. Chan,et al.  Mutational Landscape of the Essential Autophagy Gene BECN1 in Human Cancers , 2014, Molecular Cancer Research.

[36]  W. Park,et al.  Indatraline inhibits Rho- and calcium-mediated glioblastoma cell motility and angiogenesis. , 2014, Biochemical and biophysical research communications.

[37]  Zuoshang Xu,et al.  Oxidative Stress and Autophagic Alteration in Brainstem of SOD1-G93A Mouse Model of ALS , 2014, Molecular Neurobiology.

[38]  B. Joseph,et al.  The return of the nucleus: transcriptional and epigenetic control of autophagy , 2013, Nature Reviews Molecular Cell Biology.

[39]  Z. Elazar,et al.  The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. , 2013, Essays in biochemistry.

[40]  K. Guan,et al.  Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy , 2013, Autophagy.

[41]  M. Córdova-Delgado,et al.  Mitochondria: a promising target for anticancer alkaloids. , 2013, Current topics in medicinal chemistry.

[42]  A. Tee,et al.  The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. , 2013, Biochemical Society transactions.

[43]  P. Bharatam,et al.  Design of glycogen synthase kinase-3 inhibitors: an overview on recent advancements. , 2013, Current pharmaceutical design.

[44]  P. Boya,et al.  Emerging regulation and functions of autophagy , 2013, Nature Cell Biology.

[45]  T. Jacks,et al.  Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. , 2013, Genes & development.

[46]  T. P. Neufeld,et al.  ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase , 2013, Nature Cell Biology.

[47]  Mauro Piacentini,et al.  mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6 , 2013, Nature Cell Biology.

[48]  K. Guan,et al.  Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy , 2013, Cell.

[49]  P. Beart,et al.  Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. , 2012, Free radical biology & medicine.

[50]  R. Wu,et al.  Activating mitochondrial regulator PGC-1α expression by astrocytic NGF is a therapeutic strategy for Huntington's disease , 2012, Neuropharmacology.

[51]  Roberto Zoncu,et al.  Amino acids and mTORC1: from lysosomes to disease. , 2012, Trends in molecular medicine.

[52]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[53]  F. Dumont,et al.  Novel pharmacological modulators of autophagy and therapeutic prospects , 2012, Expert opinion on therapeutic patents.

[54]  A. Cuervo,et al.  Chaperone-mediated autophagy: a unique way to enter the lysosome world. , 2012, Trends in cell biology.

[55]  A. Tsirigos,et al.  Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production , 2012, Cell cycle.

[56]  F. Sotgia,et al.  Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. , 2012, Antioxidants & redox signaling.

[57]  K. Ryan,et al.  Autophagy and cancer – issues we need to digest , 2012, Journal of Cell Science.

[58]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[59]  D. Rubinsztein,et al.  Mechanisms of Autophagosome Biogenesis , 2012, Current Biology.

[60]  Han-Ming Shen,et al.  Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy , 2012, Autophagy.

[61]  A. Cuervo,et al.  Autophagy and disease: always two sides to a problem , 2012, The Journal of pathology.

[62]  Sharad Kumar,et al.  Cell death by autophagy: facts and apparent artefacts , 2011, Cell Death and Differentiation.

[63]  A. Cuervo,et al.  Chaperone-Mediated Autophagy Is Required for Tumor Growth , 2011, Science Translational Medicine.

[64]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[65]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[66]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[67]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[68]  G. Kalna,et al.  Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival , 2011, PloS one.

[69]  B. Palmieri,et al.  Clinical and Experimental Applications of Sodium Phenylbutyrate , 2011, Drugs in R&D.

[70]  R. Kurzrock,et al.  Autophagy as a target for anticancer therapy , 2011, Nature Reviews Clinical Oncology.

[71]  H. Ke,et al.  Beclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13 , 2011, Cell.

[72]  Sebastian Alers,et al.  Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop , 2011, Autophagy.

[73]  A. Thorburn,et al.  Targeting autophagy during cancer therapy to improve clinical outcomes. , 2011, Pharmacology & therapeutics.

[74]  D. Fingar,et al.  ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding , 2011, Autophagy.

[75]  Zhengyu Zha,et al.  Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. , 2011, Molecular cell.

[76]  Z. Elazar,et al.  Biogenesis and cargo selectivity of autophagosomes. , 2011, Annual review of biochemistry.

[77]  I. Bossis,et al.  Retinoic acid induces autophagosome maturation through redistribution of the cation-independent mannose-6-phosphate receptor. , 2011, Antioxidants & redox signaling.

[78]  Ana Maria Cuervo,et al.  Autophagy in the cellular energetic balance. , 2011, Cell metabolism.

[79]  Keiji Tanaka,et al.  Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells , 2011, The Journal of cell biology.

[80]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[81]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[82]  W. Engel,et al.  Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-β42 oligomers and phosphorylated tau. , 2011, Presse medicale.

[83]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[84]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[85]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[86]  L. Gudas,et al.  Retinoids, retinoic acid receptors, and cancer. , 2011, Annual review of pathology.

[87]  C. Kenific,et al.  Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation , 2011, Molecular biology of the cell.

[88]  D. Rubinsztein,et al.  Chemical modulators of autophagy as biological probes and potential therapeutics. , 2011, Nature chemical biology.

[89]  S. Tsao,et al.  Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism , 2010, Journal of cellular biochemistry.

[90]  M. Garcia-Conesa,et al.  Ellagitannins, ellagic acid and vascular health. , 2010, Molecular aspects of medicine.

[91]  A. Saluja,et al.  Autophagy in pancreatic cancer , 2010, Autophagy.

[92]  R. Lothe,et al.  UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy , 2010, Autophagy.

[93]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[94]  R. Xavier,et al.  Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease , 2010, Proceedings of the National Academy of Sciences.

[95]  H. Nagawa,et al.  Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells , 2010, BMC Cancer.

[96]  Ping Li,et al.  Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. , 2010, Cell metabolism.

[97]  K. Shokat,et al.  Shaping Development of Autophagy Inhibitors with the Structure of the Lipid Kinase Vps34 , 2010, Science.

[98]  J. Taylor,et al.  HDAC6 controls autophagosome maturation essential for ubiquitin‐selective quality‐control autophagy , 2010, The EMBO journal.

[99]  A. Dhir,et al.  Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders , 2010, Phytotherapy research : PTR.

[100]  G. Semenza HIF-1: upstream and downstream of cancer metabolism. , 2010, Current opinion in genetics & development.

[101]  S. Finkbeiner,et al.  IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome , 2009, The Journal of cell biology.

[102]  K. Ryan,et al.  The role of autophagy in tumour development and cancer therapy , 2009, Expert Reviews in Molecular Medicine.

[103]  Shou-Jiang Gao,et al.  FLIP-mediated autophagy regulation in cell death control , 2009, Nature Cell Biology.

[104]  V. Deretic,et al.  Autophagy, immunity, and microbial adaptations. , 2009, Cell host & microbe.

[105]  M. Diaz-Meco,et al.  p62 at the Crossroads of Autophagy, Apoptosis, and Cancer , 2009, Cell.

[106]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[107]  N. Yoo,et al.  Frameshift mutations of autophagy‐related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability , 2009, The Journal of pathology.

[108]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[109]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[110]  R. Kawamori,et al.  The role of autophagy in pancreatic beta-cell and diabetes. , 2009, Autophagy.

[111]  Kun Wook Chung,et al.  Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. , 2008, Cell metabolism.

[112]  Masaaki Komatsu,et al.  Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. , 2008, Cell metabolism.

[113]  J. Flores,et al.  The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. , 2008, Cancer cell.

[114]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[115]  J. Backer The regulation and function of Class III PI3Ks: novel roles for Vps34. , 2008, The Biochemical journal.

[116]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[117]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[118]  J. J. Mul,et al.  Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis , 2007, Nature Cell Biology.

[119]  E. White,et al.  Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. , 2007, Genes & development.

[120]  E. White,et al.  Autophagy suppresses tumor progression by limiting chromosomal instability. , 2007, Genes & development.

[121]  A. Cuervo,et al.  Autophagy and neurodegeneration: when the cleaning crew goes on strike , 2007, The Lancet Neurology.

[122]  J. Sotelo,et al.  Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. , 2007, Surgical neurology.

[123]  G. Mills,et al.  Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells , 2007, Oncogene.

[124]  D. Rubinsztein,et al.  The roles of intracellular protein-degradation pathways in neurodegeneration , 2006, Nature.

[125]  K. W. Kim,et al.  Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. , 2006, Cancer research.

[126]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[127]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[128]  Terje Johansen,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[129]  L. Tjernberg,et al.  Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease , 2005, The Journal of cell biology.

[130]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[131]  G. Mills,et al.  Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. , 2005, Cancer research.

[132]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[133]  Peter T. Lansbury,et al.  Impaired Degradation of Mutant α-Synuclein by Chaperone-Mediated Autophagy , 2004, Science.

[134]  M. Kelley,et al.  Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. , 2004, Anticancer research.

[135]  Leonidas Stefanis,et al.  Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. , 2004, Science.

[136]  Govind Bhagat,et al.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. , 2003, The Journal of clinical investigation.

[137]  Kazuya Nagano,et al.  Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex , 2000, The Journal of cell biology.

[138]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[139]  C. Bailly,et al.  Stimulation of topoisomerase II-mediated DNA cleavage by an indazole analogue of lucanthone. , 1999, Biochemical pharmacology.

[140]  J. Larsen,et al.  Neurochemical Profile of Lu 19‐005, a Potent Inhibitor of Uptake of Dopamine, Noradrenaline, and Serotonin , 1985, Journal of neurochemistry.