Conventional analysis of fluorescence recovery after photobleaching (FRAP) data for diffusion coefficient estimation typically involves fitting an analytical or numerical FRAP model to the recovery curve data using non-linear least squares. Depending on the model this can be time-consuming, especially for batch analysis of large numbers of data sets and if multiple initial guesses for the parameter vector are used to ensure convergence. In this work, we develop a completely new approach, DeepFRAP, utilizing machine learning for parameter estimation in FRAP. From a numerical FRAP model developed in previous work, we generate a very large set of simulated recovery curve data with realistic noise levels. The data is used for training different deep neural network regression models for prediction of several parameters, most importantly the diffusion coefficient. The neural networks are extremely fast and can estimate the parameters orders of magnitude faster than least squares. The performance of the neural network estimation framework is compared to conventional least squares estimation on simulated data, and found to be strikingly similar. Also, a simple experimental validation is performed, demonstrating excellent agreement between the two methods. We make the data and code used publicly available to facilitate further development of machine learning-based estimation in FRAP. This article is protected by copyright. All rights reserved.