What is the point of computers? A question for pure mathematicians

We discuss the idea that computers might soon help mathematicians to prove theorems in areas where they have not previously been useful. Furthermore we argue that these same computer tools will also help us in the communication and teaching of mathematics.

[1]  Floris van Doorn,et al.  A formal proof of the independence of the continuum hypothesis , 2020, CPP.

[2]  Marian Kremers 2021 , 2021, Vakblad Sociaal Werk.

[3]  Robert Y. Lewis,et al.  Simplifying Casts and Coercions (Extended Abstract) , 2020, PAAR+SC²@IJCAI.

[4]  H. R. Woudhuysen,et al.  Turing's legacy: developments from Turing's ideas in logic , 2014, Turing's Legacy.

[5]  Benjamin Grégoire,et al.  Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.

[6]  Enrico Tassi,et al.  A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) , 2014, ITP.

[7]  Jeremy Avigad,et al.  The Lean Theorem Prover (System Description) , 2015, CADE.

[8]  Lawrence C. Paulson,et al.  Grothendieck's Schemes in Algebraic Geometry , 2021, Arch. Formal Proofs.

[9]  S. Mochizuki Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-Theta-Lattice , 2021 .

[10]  Thomas Browning,et al.  Formalizing Galois Theory , 2021, Experimental Mathematics.

[11]  Georges Gonthier,et al.  The Four Colour Theorem: Engineering of a Formal Proof , 2008, ASCM.

[12]  John Harrison,et al.  HOL Light: An Overview , 2009, TPHOLs.

[13]  Pierre-Yves Strub,et al.  Unsolvability of the Quintic Formalized in Dependent Type Theory , 2021, ITP.

[14]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[15]  G. Glauberman,et al.  Local Analysis for the Odd Order Theorem: Maximal Subgroups , 1995 .

[16]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[17]  Georges Gonthier,et al.  Formal Proof—The Four- Color Theorem , 2008 .

[18]  Richard J. Boulton,et al.  Theorem Proving in Higher Order Logics , 2003, Lecture Notes in Computer Science.

[19]  Kevin Buzzard,et al.  Formalising perfectoid spaces , 2019, CPP.

[20]  Fabian Immler,et al.  The Poincaré-Bendixson theorem in Isabelle/HOL , 2020, CPP.

[21]  Johannes Hölzl,et al.  Formalizing the Solution to the Cap Set Problem , 2019, ITP.

[22]  Anne Baanen,et al.  A formalization of Dedekind domains and class groups of global fields , 2021, ITP.

[23]  Robert Y. Lewis A formal proof of Hensel's lemma over the p-adic integers , 2019, CPP.

[24]  Benjamin Werner,et al.  Sets in Types, Types in Sets , 1997, TACS.

[25]  Jasmin Christian Blanchette,et al.  Three years of experience with Sledgehammer, a Practical Link Between Automatic and Interactive Theorem Provers , 2012, IWIL@LPAR.

[26]  Bjorn Kjos-Hanssen,et al.  A Parametrized Family of Tversky Metrics Connecting the Jaccard Distance to an Analogue of the Normalized Information Distance , 2022, LFCS.

[27]  Peter Scholze,et al.  Liquid Tensor Experiment , 2021, Exp. Math..

[28]  Thomas C. Hales,et al.  Mathematics in the age of the Turing machine , 2013, Turing's Legacy.

[29]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[30]  Eric Wieser Scalar actions in Lean's mathlib , 2021, ArXiv.

[31]  The mathlib Community The lean mathematical library , 2020, CPP.

[32]  John Harrison,et al.  Formalizing an Analytic Proof of the Prime Number Theorem , 2009, Journal of Automated Reasoning.

[33]  Yves Bertot,et al.  Distant Decimals of $$\pi $$π: Formal Proofs of Some Algorithms Computing Them and Guarantees of Exact Computation , 2017, Journal of Automated Reasoning.

[34]  Robert Y. Lewis,et al.  Formalizing the ring of Witt vectors , 2021, CPP.

[35]  Fabian Immler,et al.  A Verified ODE Solver and the Lorenz Attractor , 2018, Journal of Automated Reasoning.