Influence of conformation on the representation of small flexible molecules at low resolution: alignment of endothiapepsin ligands

SummaryIn this contribution, we discuss a molecular representation mode for the generation of reduced descriptions of flexible molecules in various conformations. The representations of the endothiapepsin ligands are constituted by graphs of peaks obtained through a hierarchical merging algorithm which combines the location of promolecular electron density (ED) maxima with the decomposition of the molecular structures into fragments. The representations are then aligned through the use of a Monte Carlo/Simulated Annealing procedure. The evaluation function of the alignment solutions is based on the local density values of the peaks and their inter-distances. The applications show that the alignment of a given molecule onto itself, in a different conformation, is successful when a pseudo-topological path length is considered in the evaluation function of the solution, while Cartesian distances are more adapted to the scoring for alignments of two different molecules in their co-crystallized conformation. Results are compared with the available literature data.

[1]  Chong Hak Chae,et al.  Flexible molecular superposition: development of a combined similarity index and application of the constrained optimization technique , 2001, J. Comput. Chem..

[2]  D. P. Vercauteren,et al.  Structural identification of local maxima in low-resolution promolecular electron density distributions , 2003 .

[3]  J. Cooper,et al.  A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica , 1994, Protein science : a publication of the Protein Society.

[4]  Gordon M Crippen,et al.  Three-dimensional molecular descriptors and a novel QSAR method. , 2002, Journal of molecular graphics & modelling.

[5]  Daniel P. Vercauteren,et al.  Development of a Genetic Algorithm Method Especially Designed for the Comparison of Molecular Models: Application to the Elucidation of the Benzodiazepine Receptor Pharmacophore , 2007 .

[6]  Wolfgang Huber,et al.  FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules , 2001, J. Comput. Aided Mol. Des..

[7]  Ajay N. Jain Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. , 2003, Journal of medicinal chemistry.

[8]  Han van de Waterbeemd,et al.  Computer-Assisted Lead Finding and Optimization , 1997 .

[9]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[10]  Ramon Carbó-Dorca,et al.  TGSA‐Flex: Extending the capabilities of the Topo‐Geometrical superposition algorithm to handle flexible molecules , 2004, J. Comput. Chem..

[11]  Peter Willett,et al.  Similarity Searching in Files of Three-Dimensional Chemical Structures. Alignment of Molecular Electrostatic Potential Fields with a Genetic Algorithm , 1996, J. Chem. Inf. Comput. Sci..

[12]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[13]  Patrick Bultinck,et al.  Quality of Approximate Electron Densities and Internal Consistency of Molecular Alignment Algorithms in Molecular Quantum Similarity , 2003, J. Chem. Inf. Comput. Sci..

[14]  Daniel P. Vercauteren,et al.  Critical Point Representations of Electron Density Maps for the Comparison of Benzodiazepine-Type Ligands , 2000, J. Chem. Inf. Comput. Sci..

[15]  Meir Glick,et al.  Docking of flexible molecules using multiscale ligand representations. , 2002, Journal of medicinal chemistry.

[16]  E. Belokoneva,et al.  X-ray and Electron Diffraction Study of MgO , 1998 .

[17]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[18]  P. Labute,et al.  Flexible alignment of small molecules. , 2001, Journal of medicinal chemistry.

[19]  X Gironés,et al.  A comparative study of isodensity surfaces using ab initio and ASA density functions. , 1998, Journal of molecular graphics & modelling.

[20]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[21]  W. G. Richards,et al.  Rapid evaluation of shape similarity using Gaussian functions , 1993, J. Chem. Inf. Comput. Sci..

[22]  S. S. Pundlik,et al.  Topographical analysis of electron density and molecular electrostatic potential for cyclopropa- and cyclobutabenzenes , 1995 .

[23]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[25]  Irwin D. Kuntz,et al.  ELECT++: Faster conformational search method for docking flexible molecules using molecular similarity , 1998 .

[26]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[27]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[28]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[29]  Peter Willett,et al.  Similarity Searching in Databases of Flexible 3D Structures Using Smoothed Bounded Distance Matrices , 2003, J. Chem. Inf. Comput. Sci..

[30]  W. Graham Richards,et al.  The Utilization of Reduced Dimensional Representations of Molecular Structure for Rapid Molecular Similarity Calculations , 1997, J. Chem. Inf. Comput. Sci..

[31]  L. Leherte Application of multiresolution analyses to electron density maps of small molecules: Critical point representations for molecular superposition , 2001 .

[32]  X Fradera,et al.  Similarity‐driven flexible ligand docking , 2000, Proteins.

[33]  A. Ghose,et al.  Geometrically feasible binding modes of a flexible ligand molecule at the receptor site , 1985 .

[34]  U. Pietsch,et al.  Critical Points in a Crystal and Procrystal , 1998 .

[35]  Ramon Carbó-Dorca,et al.  Quantum similarity measures under atomic shell approximation: First order density fitting using elementary Jacobi rotations , 1997 .

[36]  M. Leboeuf,et al.  Topological analysis of the molecular electrostatic potential , 1999 .

[37]  Jordi Mestres,et al.  MIMIC: A molecular‐field matching program. Exploiting applicability of molecular similarity approaches , 1997 .

[38]  Gerhard Klebe,et al.  Methodological developments and strategies for a fast flexible superposition of drug-size molecules , 1999, J. Comput. Aided Mol. Des..

[39]  L. Leherte Hierarchical analysis of promolecular full electron-density distributions: description of protein structure fragments. , 2004, Acta crystallographica. Section D, Biological crystallography.

[40]  Robert D. Clark,et al.  Efficient Generation, Storage, and Manipulation of Fully Flexible Pharmacophore Multiplets and Their Use in 3-D Similarity Searching , 2003, J. Chem. Inf. Comput. Sci..

[41]  Philip M. Dean,et al.  slate: A method for the superposition of flexible ligands , 2001, J. Comput. Aided Mol. Des..

[42]  Jordi Mestres,et al.  A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors. 2. The relationship between alignment solutions obtained from conformationally rigid and flexible matching , 2000, J. Comput. Aided Mol. Des..

[43]  Gareth Jones,et al.  A genetic algorithm for flexible molecular overlay and pharmacophore elucidation , 1995, J. Comput. Aided Mol. Des..

[44]  Emili Besalú,et al.  Molecular Quantum Similarity: theoretical Framework, Ordering Principles, and Visualization Techniques12 , 1994 .

[45]  N Meurice,et al.  Comparison of benzodiazepine-like compounds using topological analysis and genetic algorithms. , 1998, SAR and QSAR in environmental research.

[46]  Gerhard Klebe,et al.  Different approaches toward an automatic structural alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors , 1994, J. Comput. Aided Mol. Des..

[47]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[48]  L. Pacios,et al.  Analytic atomic electron densities in molecular self-similarity measures and electrostatic potentials , 1998 .

[49]  M. Spackman,et al.  Molecular surfaces from the promolecule: A comparison with Hartree–Fock ab initio electron density surfaces , 2000 .

[50]  Reino Laatikainen,et al.  FLUFF-BALL, A Template-Based Grid-Independent Superposition and QSAR Technique: Validation Using a Benchmark Steroid Data Set , 2003, J. Chem. Inf. Comput. Sci..

[51]  K. Rosso,et al.  A comparison of procrystal and ab initio model representations of the electron-density distributions of minerals , 2002 .

[52]  W. Richards,et al.  Identification of ligand binding sites on proteins using a multi-scale approach. , 2002, Journal of the American Chemical Society.

[53]  C. Lecomte,et al.  Characterization of intra-framework and guest/host interactions in the AlPO4-15 molecular sieve by charge-density analysis. , 2003, Acta crystallographica. Section B, Structural science.

[54]  Andreas Krämer,et al.  Fast 3D molecular superposition and similarity search in databases of flexible molecules , 2003, J. Comput. Aided Mol. Des..

[55]  Johann Gasteiger,et al.  Superposition of Three-Dimensional Chemical Structures Allowing for Conformational Flexibility by a Hybrid Method , 1998, J. Chem. Inf. Comput. Sci..

[56]  Miklos Feher,et al.  Multiple Flexible Alignment with SEAL: A Study of Molecules Acting on the Colchicine Binding Site , 2000, J. Chem. Inf. Comput. Sci..

[57]  L Laaksonen,et al.  A graphics program for the analysis and display of molecular dynamics trajectories. , 1992, Journal of molecular graphics.

[58]  Paul L. A. Popelier,et al.  Quantum molecular similarity. 1. BCP space , 1999 .

[59]  C. Lemmen,et al.  FLEXS: a method for fast flexible ligand superposition. , 1998, Journal of medicinal chemistry.

[60]  P Willett,et al.  Pharmacophoric pattern matching in files of three-dimensional chemical structures: implementation of flexible searching. , 1993, Journal of molecular graphics.

[61]  Thomas Lengauer,et al.  Time-efficient flexible superposition of medium-sized molecules , 1997, German Conference on Bioinformatics.

[62]  X Gironés,et al.  Application of promolecular ASA densities to graphical representation of density functions of macromolecular systems. , 2001, Journal of molecular graphics & modelling.

[63]  P Willett,et al.  Pharmacophoric pattern matching in files of three-dimensional chemical structures: use of bounded distance matrices for the representation and searching of conformationally flexible molecules. , 1992, Journal of molecular graphics.

[64]  Peter Willett,et al.  Similarity Searching in Files of Three-Dimensional Chemical Structures: Flexible Field-Based Searching of Molecular Electrostatic Potentials , 1996, J. Chem. Inf. Comput. Sci..

[65]  T. Lin,et al.  A comparative molecular field analysis study on several bioactive peptides using the alignment rules derived from identification of commonly exposed groups. , 1999, Biochimica et biophysica acta.

[66]  A. Laaksonen,et al.  Visualization of solvation structures in liquid mixtures. , 1997, Journal of molecular graphics & modelling.

[67]  Zsuzsanna Szabó,et al.  Novel Treatment of Conformational Flexibility Using Interval Analysis , 2000, J. Chem. Inf. Comput. Sci..