Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation

[1]  O. Nielsen,et al.  Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. , 2011, JACC. Cardiovascular imaging.

[2]  S. Meloche,et al.  Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth , 2011, Circulation research.

[3]  Z. Abassi,et al.  Aortocaval Fistula in Rat: A Unique Model of Volume-Overload Congestive Heart Failure and Cardiac Hypertrophy , 2011, Journal of biomedicine & biotechnology.

[4]  G. Molenberghs Repeated Measures , 2011, International Encyclopedia of Statistical Science.

[5]  D. Lachance,et al.  A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. , 2011, American journal of physiology. Heart and circulatory physiology.

[6]  J. McMullen,et al.  Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. , 2010, Pharmacology & therapeutics.

[7]  Yibin Wang,et al.  Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. , 2010, Physiological reviews.

[8]  V. Regitz-Zagrosek,et al.  Differential Cardiac Remodeling in Preload Versus Afterload , 2010, Circulation.

[9]  E. Herrold,et al.  Fibronectin Gene Expression in Aortic Regurgitation: Relative Roles of Mitogen-Activated Protein Kinases , 2009, Cardiology.

[10]  Hugo A. Katus,et al.  The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload , 2009, Proceedings of the National Academy of Sciences.

[11]  E. Herrold,et al.  Differential Expression of Matrix Metalloproteinases and Tissue Inhibitors and Extracellular Matrix Remodeling in Aortic Regurgitant Hearts , 2009, Cardiology.

[12]  D. Lachance,et al.  Early left ventricular remodeling in acute severe aortic regurgitation: insights from an animal model. , 2008, The Journal of heart valve disease.

[13]  David A. Kass,et al.  Tackling heart failure in the twenty-first century , 2008, Nature.

[14]  Yunyu Zhang,et al.  Protective effects of exercise and phosphoinositide 3-kinase(p110α) signaling in dilated and hypertrophic cardiomyopathy , 2007, Proceedings of the National Academy of Sciences.

[15]  Anthony J. Muslin,et al.  Akt1 Is Required for Physiological Cardiac Growth , 2006, Circulation.

[16]  A. Evangelista,et al.  Long-term vasodilator therapy in patients with severe aortic regurgitation. , 2005, The New England journal of medicine.

[17]  Raffi Bekeredjian,et al.  Valvular Heart Disease: Aortic Regurgitation , 2005, Circulation.

[18]  Guy Salama,et al.  Calmodulin kinase II inhibition protects against structural heart disease , 2005, Nature Medicine.

[19]  D. Lachance,et al.  Effectiveness of &bgr;-Blockade in Experimental Chronic Aortic Regurgitation , 2004 .

[20]  Y. Takeishi,et al.  Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload , 2004, Basic Research in Cardiology.

[21]  M. Borst,et al.  Regulation of protein kinase C isozymes in volume overload cardiac hypertrophy , 2004, Molecular and Cellular Biochemistry.

[22]  D. Lachance,et al.  Angiotensin-converting enzyme inhibitor captopril prevents volume overload cardiomyopathy in experimental chronic aortic valve regurgitation. , 2004, Canadian journal of physiology and pharmacology.

[23]  P. Kang,et al.  The Insulin-like Growth Factor 1 Receptor Induces Physiological Heart Growth via the Phosphoinositide 3-Kinase(p110α) Pathway* , 2004, Journal of Biological Chemistry.

[24]  D. Lachance,et al.  Effectiveness of beta-blockade in experimental chronic aortic regurgitation. , 2004, Circulation.

[25]  P. Kang,et al.  Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Herrold,et al.  Myocardial Fibrosis in Chronic Aortic Regurgitation: Molecular and Cellular Responses to Volume Overload , 2002, Circulation.

[27]  P. Kang,et al.  Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice , 2002, Molecular and Cellular Biology.

[28]  J. Couet,et al.  Experimental aortic regurgitation in rats under echocardiographic guidance. , 2002, The Journal of heart valve disease.

[29]  E. Olson,et al.  Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy , 2001, The EMBO journal.

[30]  J. Molkentin,et al.  Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. , 2000, Circulation.

[31]  Y. Zou,et al.  Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. , 1999, Circulation.

[32]  D. Glower,et al.  Left ventricular adaptation to aortic regurgitation in conscious dogs. , 1997, The Journal of thoracic and cardiovascular surgery.

[33]  J. Borer,et al.  Heart failure due to chronic experimental aortic regurgitation. , 1994, The American journal of physiology.

[34]  R. Devereux,et al.  Left ventricular diastolic and systolic performance during chronic experimental aortic regurgitation. , 1992, The American journal of physiology.

[35]  M. Nakashima,et al.  A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. , 1989, Journal of pharmacological methods.

[36]  S. Glantz,et al.  Left ventricular mechanical adaptation to chronic aortic regurgitation in intact dogs. , 1987, The American journal of physiology.

[37]  F. Yin,et al.  Ventricular wall stress. , 1981, Circulation research.