Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range

[1]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[2]  K Sarayeddine,et al.  External and internal reflection near field microscopy: experiments and results. , 1990, Applied optics.

[3]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[4]  K. Karrai,et al.  Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .

[5]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[6]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[7]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[8]  R. Blaikie,et al.  Sub-diffraction-limited patterning using evanescent near-field optical lithography , 1999 .

[9]  Thomas W. Ebbesen,et al.  Strongly enhanced optical transmission through subwavelength holes in metal films , 2000 .

[10]  H. Meyer,et al.  Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist , 2001 .

[11]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[12]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[13]  Dawn K. Gifford,et al.  Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling , 2002 .

[14]  Fadi Issam Baida,et al.  Light transmission by subwavelength annular aperture arrays in metallic films , 2002 .

[15]  E. M. Forgan,et al.  Observation of two-dimensional spin fluctuations in the bilayer ruthenate Sr3Ru2O7 by inelastic neutron scattering , 2002, cond-mat/0201556.

[16]  F. Baida,et al.  Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes , 2003 .

[17]  Thibaut Sylvestre,et al.  Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser. , 2003, Optics letters.

[18]  Steve Blair,et al.  Fluorescence enhancement from an array of subwavelength metal apertures. , 2003, Optics letters.

[19]  Fumio Koyama,et al.  Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating , 2003 .

[20]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  A. Moreau,et al.  Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands , 2004 .

[22]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.

[23]  F. Baida,et al.  A new structure for enhanced transmission through a two‐dimensional metallic grating , 2004, Journal of microscopy.

[24]  Fadi Issam Baida,et al.  Coupling between surface plasmon modes on metal films , 2004 .

[25]  Analytic solutions for Gaussian gain profile resonators , 2005 .

[26]  K. Malloy,et al.  Enhanced infrared transmission through subwavelength coaxial metallic arrays. , 2005, Physical review letters.

[27]  F. Baida,et al.  Fabrication of arrays of sub-wavelength nano-apertures in an optically thick gold layer on glass slides for optical studies , 2005 .

[28]  T E Browder,et al.  Observation of B+-->K1(1270)+gamma. , 2005, Physical review letters.

[29]  W. Barnes,et al.  Fluorescence in the presence of metallic hole arrays , 2005 .