Multiattribute Shopping Models and Ridge Regression Analysis

Policy decisions regarding retailing facilities essentially involve multiple attributes of shopping centres. If mathematical shopping models are to contribute to these decision processes, their structure should reflect the multiattribute character of retailing planning. Examination of existing models shows that most operational shopping models include only two policy variables. A serious problem in the calibration of the existing multiattribute shopping models is that of multicollinearity arising from the fact that strong linear relationships among policy variables frequently occur in real world situations. This paper points at the technique of ridge regression analysis to overcome the problem of multicollinearity in the development of multiattribute shopping models. The use of ridge regression analysis is illustrated in an application of the multiplicative competitive interaction model to spatial shopping behaviour.

[1]  Gordon Pirie,et al.  Thoughts on Revealed Preference and Spatial Behaviour , 1976 .

[2]  M. J. Baxter,et al.  CALIBRATION OF PRODUCTION‐CONSTRAINED TRIP DISTRIBUTION MODELS AND THE EFFECT OF INTERVENING OPPORTUNITIES , 1979 .

[3]  Gilbert A. Churchill,et al.  A Comparison of Ridge Estimators , 1978 .

[4]  B. Lentnek,et al.  CONSUMER BEHAVIOR IN DIFFERENT AREAS , 1975 .

[5]  P. Kotler Competitive Strategies for New Product Marketing Over the Life Cycle , 1965 .

[6]  Michael Batty Exploratory Calibration of a Retail Location Model Using Search by Golden Section , 1971 .

[7]  F. Stetzer,et al.  Parameter Estimation for the Constrained Gravity Model: A Comparison of Six Methods , 1976 .

[8]  Frank J. Cesario,et al.  Alternative Models for Spatial Choice , 1976 .

[9]  Hrishikesh D. Vinod,et al.  Application of New Ridge Regression Methods to a Study of Bell System Scale Economies , 1976 .

[10]  David A. Belsley Multicollinearity: Diagnosing its Presence and Assessing the Potential Damage it Causes Least Squares Estimation , 1976 .

[11]  W. G. Hansen,et al.  A RETAIL MARKET POTENTIAL MODEL , 1965 .

[12]  F. Cesario A New Method for Analyzing Outdoor Recreation Trip Data. , 1975 .

[13]  R. Snee,et al.  Ridge Regression in Practice , 1975 .

[14]  R. Farebrother The Minimum Mean Square Error Linear Estimator and Ridge Regression , 1975 .

[15]  Edgar A. Pessemier,et al.  Using Laboratory Brand Preference Scales to Predict Consumer Brand Purchases , 1971 .

[16]  A. E. Hoerl,et al.  Ridge regression iterative estimation of the biasing parameter , 1976 .

[17]  Linking Studies of the Individual with Models of Aggregate Behaviour: An Empirical Example , 1976 .

[18]  R. Weischedel,et al.  Optimal Subset Selection: Multiple Regression, Interdependence and Optimal Network Algorithms , 1974 .

[19]  A. F. Smith,et al.  Ridge-Type Estimators for Regression Analysis , 1974 .

[20]  H. Timmermans,et al.  REVEALED SPACE PREFERENCE THEORY — A REJOINDER , 1979 .

[21]  A spatial preference model of regional shopping behaviour , 1979 .

[22]  Michael Batty,et al.  The Calibration of Gravity, Entropy, and Related Models of Spatial Interaction , 1972 .

[23]  D. Guilkey,et al.  Directed ridge regression techniques in cases of multicollinearity , 1975 .

[24]  David E. Boyce,et al.  Optimal Subset Selection , 1974 .

[25]  N. Wermuth,et al.  A Simulation Study of Alternatives to Ordinary Least Squares , 1977 .

[26]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[27]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[28]  Frank J. Cesario,et al.  MORE ON THE GENERALIZED TRIP DISTRIBUTION MODEL , 1974 .

[29]  Lee G. Cooper,et al.  Voting for a Political Candidate Under Conditions of Minimal Information , 1974 .

[30]  J. N. Adichie Testing parallelism of regression lines against ordered alternatives , 1976 .

[31]  W. Tobler Estimation of Attractivities from Interactions , 1979 .

[32]  M. Kendall,et al.  The discarding of variables in multivariate analysis. , 1967, Biometrika.

[33]  Lee G. Cooper,et al.  Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach , 1974 .

[34]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[35]  Leonard S. Simon,et al.  Maximum Likelihood Estimation of Central-City Food Trading Areas , 1972 .

[36]  J. Lambin A Computer On-Line Marketing Mix Model , 1972 .

[37]  Gordon O. Ewing The Interpretation and Estimation of Parameters in Constrained and Unconstrained Trip Distribution Models , 1978 .

[38]  W. Hemmerle An Explicit Solution for Generalized Ridge Regression , 1975 .

[39]  I. C. Pankhurst,et al.  An empirical study of two shopping models , 1978 .

[40]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[41]  C. Theobald Generalizations of Mean Square Error Applied to Ridge Regression , 1974 .

[42]  M. Gibson,et al.  Retail turnover in the East Midlands: A regional application of a gravity model , 1972 .

[43]  W. Recker,et al.  Factors influencing destination choice for the urban grocery shopping trip , 1978 .

[44]  Mike Baxter,et al.  THE APPLICATION OF LOGIT REGRESSION ANALYSIS TO PRODUCTION-CONSTRAINED GRAVITY MODELS* , 1979 .

[45]  Glen L. Urban,et al.  A Mathematical Modeling Approach to Product Line Decisions , 1969 .

[46]  Stan Openshaw,et al.  Some theoretical and applied aspects of spatial interaction shopping models , 1975 .

[47]  William J. Hemmerle,et al.  Explicit and Constrained Generalized Ridge Estimation , 1978 .

[48]  REVEALED SPACE PREFERENCE THEORY — A CAUTIONARY NOTE , 1979 .

[49]  V. Mahajan,et al.  Parameter Estimation in Marketing Models in the Presence of Multicollinearity: An Application of Ridge Regression , 1977 .

[50]  F. Cesario A GENERALIZED TRIP DISTRIBUTION MODEL , 1973 .

[51]  G. Rushton Behavioral Correlates of Urban Spatial Structure , 1971 .

[52]  G. Rushton ANALYSIS OF SPATIAL BEHAVIOR BY REVEALED SPACE PREFERENCE , 1969 .

[53]  R. Hubbard Parameter Stability in Cross-Sectional Models of Ethnic Shopping Behaviour , 1979 .