Analysis of the thermoelectric properties of n-type ZnO

We report an investigation of the temperature- and doping-dependent thermoelectric behavior of n-type ZnO. The results are based on a combination of experimental data from the literature and calculated transport functions obtained from Boltzmann transport theory applied to the first-principles electronic structure. From this we obtain the dependence of the figure of merit ZT on doping and temperature. We find that improvement of the lattice thermal conductivity is essential for obtaining high ZT in n-type ZnO.

[1]  M. Ohtaki,et al.  High Thermoelectric Performance of Dually Doped ZnO Ceramics , 2009 .

[2]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[3]  I. I. Mazin,et al.  CALCULATED THERMOELECTRIC PROPERTIES OF LA-FILLED SKUTTERUDITES , 1997 .

[4]  Koichi Eguchi,et al.  Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion , 1997 .

[5]  D. Gamelin,et al.  Colloidal Nanocrystals of Wurtzite Zn1−xCoxO (0 ≤ x ≤ 1): Models of Spinodal Decomposition in an Oxide Diluted Magnetic Semiconductor , 2008 .

[6]  Y. Fujishiro,et al.  Characterization of Thermoelectric Metal Oxide Elements Prepared by the Pulse Electric‐Current Sintering Method , 2005 .

[7]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[8]  David J. Singh Doping-dependent thermopower of PbTe from Boltzmann transport calculations , 2010 .

[9]  David J. Singh Electronic structure calculations with the Tran-Blaha modified Becke-Johnson Density Functional , 2010, 1009.1807.

[10]  David J. Singh,et al.  Influence of band structure on the large thermoelectric performance of lanthanum telluride , 2009 .

[11]  R. Xiong,et al.  Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb , 2009 .

[12]  Engel,et al.  Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. , 1993, Physical review. B, Condensed matter.

[13]  K. Niihara,et al.  Microstructural and Thermoelectric Characteristics of Zinc Oxide‐Based Thermoelectric Materials Fabricated Using a Spark Plasma Sintering Process , 2005 .

[14]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[15]  Stephen C. Smith,et al.  Thermal Conductivity of Zinc Oxide: From Green to Sintered State , 2004 .

[16]  M. Helm,et al.  Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing , 2008, 0908.0458.

[17]  G. A. Slack,et al.  Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe 2 + Impurities , 1972 .

[18]  David J. Singh,et al.  Electronic structure and thermoelectric properties of layered PbSe-WSe 2 materials , 2009 .

[19]  Toshiki Tsubota,et al.  Transport properties and thermoelectric performance of (Zn1–yMgy)1–xAlxO , 1998 .

[20]  C. B. Vining,et al.  Electrical properties of Ga and ZnS doped ZnO prepared by mechanical alloying , 1998 .

[21]  K. Watari,et al.  Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics , 2009 .

[22]  H. Ibach Thermal Expansion of Silicon and Zinc Oxide (II) , 1969 .

[23]  C. Cao,et al.  Synthesis and magnetic properties of Al doped Zn0.995Mn0.005O powers , 2009 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  David J. Singh,et al.  Suppression of thermopower of Na x Co O 2 by an external magnetic field: Boltzmann transport combined with spin-polarized density functional theory , 2007 .

[26]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[27]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[28]  K. Watari,et al.  Hall mobilities of Al- and Ga-doped ZnO polycrystals , 2009 .

[29]  S. Katsuyama,et al.  Thermoelectric properties of (Zn1−yMgy)1−xAlxO ceramics prepared by the polymerized complex method , 2002 .

[30]  T. Vasilos,et al.  Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity , 1954 .

[31]  Z. Kato,et al.  Preparation and Thermoelectric Property of Highly Oriented Al-Doped ZnO Ceramics by a High Magnetic Field , 2006 .

[32]  David J. Singh,et al.  Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium , 2003 .

[33]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[34]  David J. Singh,et al.  High-temperature thermoelectric performance of heavily doped PbSe , 2010 .

[35]  T. Tani,et al.  Thermoelectric Performance of Yttrium-substituted (ZnO)5In2O3 Improved through Ceramic Texturing , 2002 .

[36]  K. Watari,et al.  Thermoelectricity of Al-doped ZnO at different carrier concentrations , 2007 .

[37]  First-principles study of Zn-Sb thermoelectrics , 1997, cond-mat/9709148.

[38]  隆 吉田,et al.  RF マグネトロンスパッタ法により作製した Zn0.98Al0.02O 薄膜の熱電特性 , 2004 .

[39]  David J. Singh Structure and optical properties of high light output halide scintillators , 2010, 1008.2175.