Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: the link between environmental impacts and operational parameters.

[1]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[2]  Nilay Shah,et al.  Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy) , 2013 .

[3]  L. Hamelin,et al.  Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective. , 2012, Bioresource technology.

[4]  G. Dóka Life Cycle Inventories of Waste Treatment Services , 2003 .

[5]  M. Nelles,et al.  Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production , 2012, The International Journal of Life Cycle Assessment.

[6]  Marta Carballa,et al.  Enhanced methane production from pig manure anaerobic digestion using fish and biodiesel wastes as co-substrates. , 2012, Bioresource technology.

[7]  Jens Lansche,et al.  Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates , 2012 .

[8]  Forbes R McDougall,et al.  Integrated Solid Waste Management: A Lifecycle Inventory , 1995 .

[9]  B. Riaño,et al.  Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater. , 2011, Bioresource technology.

[10]  J. Holm‐Nielsen,et al.  The future of anaerobic digestion and biogas utilization. , 2009, Bioresource technology.

[11]  T. Rehl,et al.  Life cycle assessment of energy generation from biogas—Attributional vs. consequential approach , 2012 .

[12]  Pål Börjesson,et al.  Environmental systems analysis of biogas systems—Part II: The environmental impact of replacing various reference systems , 2007 .

[13]  R. Omar,et al.  Anaerobic digestion technology in livestock manure treatment for biogas production: A review , 2012 .

[14]  S. Heaven,et al.  Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. , 2011, Bioresource technology.

[15]  P Mostbauer,et al.  Climate balance of biogas upgrading systems. , 2010, Waste management.

[16]  Rafael Borja,et al.  A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors , 2004 .

[17]  A. Moldes,et al.  Valorization of winery waste vs. the costs of not recycling. , 2011, Waste management.

[18]  A. Serrano,et al.  Agri-food waste valorization through anaerobic co-digestion: fish and strawberry residues , 2013 .

[19]  Martina Poeschl,et al.  Environmental impacts of biogas deployment – Part II: life cycle assessment of multiple production and utilization pathways , 2012 .

[20]  Christian J. R. Coronado,et al.  Glycerol: Production, consumption, prices, characterization and new trends in combustion , 2013 .

[21]  A. Hospido,et al.  Environmental and economic profile of six typologies of wastewater treatment plants. , 2011, Water research.

[22]  Bo Pedersen Weidema,et al.  Marginal production technologies for life cycle inventories , 1999 .

[23]  J M Lema,et al.  A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. , 2010, Bioresource technology.

[24]  P Balsari,et al.  Residual biogas potential from the storage tanks of non-separated digestate and digested liquid fraction. , 2011, Bioresource technology.

[25]  J Mata-Alvarez,et al.  Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. , 2012, Bioresource technology.

[26]  Henrikke Baumann,et al.  The hitch hiker's guide to LCA : an orientation in life cycle assessment methodology and application , 2004 .

[27]  Sara González-García,et al.  Comparative environmental performance of three different annual energy crops for biogas production in Northern Italy. , 2013 .

[28]  Eva Blasco Hedo Real Decreto 1528/2012, de 8 de noviembre, por el que se establecen las normas aplicables a los subproductos animales y los productos derivados no destinados al consumo humano. (BOE núm. 277, de 17 de noviembre de 2012) , 2012 .

[29]  J. P. Frost,et al.  Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. , 2011, Bioresource technology.

[30]  Frank Brentrup,et al.  Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector , 2000 .

[31]  M. Carballa,et al.  Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes , 2014, Applied Microbiology and Biotechnology.

[32]  Santiago García-Gen,et al.  Generalised modelling approach for anaerobic co-digestion of fermentable substrates. , 2013, Bioresource technology.

[33]  Sara González-García,et al.  Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. , 2013, The Science of the total environment.

[34]  C. Forster,et al.  Batch co-digestion of multi-component agro-wastes. , 2001, Bioresource technology.

[35]  Magnus Bengtsson,et al.  Life cycle assessment of wastewater systems - case studies of conventional treatment, urine sorting and liquid composting in three Swedish municipalities , 1997 .

[36]  Marcelle C. McManus,et al.  Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste , 2013 .

[37]  A. Gitelson,et al.  Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm , 1996 .

[38]  I. Angelidaki,et al.  Codigestion of manure and organic wastes in centralized biogas plants , 2003, Applied biochemistry and biotechnology.

[39]  Irini Angelidaki,et al.  Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. , 2011, Bioresource technology.