Output feedback guaranteed tracking control through finite observers

This paper presents a solution scheme for the problem of tracking a partially observed motion for a controlled linear system, on the basis of available observations corrupted by unknown but geometrically bounded noise. The given solutions are based on the set-membership (“bounding”) approach to such models and the calculation procedures rely on methods of ellipsoidal calculus, producing jointly a closed scheme - “from theory to computation” (see [1], [2], [3], [4]).

[1]  T. Basar,et al.  H/sup /spl infin//-optimal tracking control techniques for nonlinear underactuated systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[2]  A. N. Krasovskii,et al.  Control under Lack of Information , 1994, Dynamics and Control.

[3]  T. Başar,et al.  IEEE Decision and Control Conference Sydney , Australia , Dec 2000 H ∞-Optimal Tracking Control Techniques for Nonlinear Underactuated Systems , 2006 .

[4]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[5]  A. I. Subbotin,et al.  Game-Theoretical Control Problems , 1987 .

[6]  Martin Corless,et al.  Practical stabilizability of uncertain dynamical systems: Application to robotic tracking , 1985 .

[7]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[8]  John S. Baras,et al.  Partially Observed Differential Games, Infinite Dimensional HJI Equations, and Nonlinear HControl , 1994 .

[9]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[10]  P. Varaiya,et al.  Optimization of Output Feedback Control Under Set-Membership Uncertainty , 2011, J. Optim. Theory Appl..

[11]  Federico Thomas,et al.  An ellipsoidal calculus based on propagation and fusion , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[12]  M. R. James,et al.  Partially Observed Differential Games, Infinite-Dimensional Hamilton--Jacobi--Isaacs Equations, and Nonlinear $H_\infty$ Control , 1996 .

[13]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[14]  A. Kurzhanski,et al.  On the Theory of Trajectory Tubes — A Mathematical Formalism for Uncertain Dynamics, Viability and Control , 1993 .

[15]  K. Åström Introduction to Stochastic Control Theory , 1970 .